

Horizon 2020 Program (2014-2020)

A computing toolkit for building efficient autonomous
applications leveraging humanistic intelligence

(TEACHING)

D2.1: State-of-the-art analysis and preliminary requirement
specifications for the computing and communication platform†

Contractual Date of Delivery 31/10/2020
Actual Date of Delivery 31/12/2020
Deliverable Security Class Public
Editor Patrizio Dazzi (CNR)
Contributors UNIPI: Gabriele Mencagli

CNR: Patrizio Dazzi, Emanuele Carlini,
Alberto Gotta, Pietro Cassarà
TRT: Sylvain Girbal
I&M: Lorenzo Giraudi
IFAG: Antonio Escobar

Quality Assurance Reviewer Claudio Gallicchio (UNIPI)

† The research leading to these results has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 871385.

TEACHING D2.1 ICT-01-2019/№ 871385

TEACHING - 2 - January, 2020

The TEACHING Consortium

University of Pisa (UNIPI) Coordinator Italy

Harokopio University of Athens (HUA) Principal Contractor Greece
Consiglio Nazionale delle Ricerche
(CNR) Principal Contractor Italy

Graz University of Technology (TUG)
 Principal Contractor Austria

AVL List GmbH
 Principal Contractor

Austria

Marelli Europe S.p.A.
 Principal Contractor Italy

Ideas & Motion
 Principal Contractor Italy

Thales Research & Technology
 Principal Contractor France

Information Technology for Market Leadership
 Principal Contractor Greece

Infineon Technologies AG
 Principal Contractor Germany

TEACHING D2.1 ICT-01-2019/№ 871385

TEACHING - 3 - January, 2020

Document Revisions & Quality Assurance

Internal Reviewers

1. Reviewer Claudio Gallicchio, (UNIPI)

Revisions
Version Date By Overview

1.0 30/12/2020 Editor Final

0.3R 29/12/2020 Reviewer Comments on draft

0.3 21/12/2020 Editor First draft

0.2 18/12/2020 Contributors All Contributions provided

0.1 12/11/2020 Editor ToC

TEACHING D2.1 ICT-01-2019/№ 871385

TEACHING - 4 - January, 2020

Table of Contents
LIST OF FIGURES .. 7	
LIST OF ABBREVIATIONS .. 8	
EXECUTIVE SUMMARY .. 9	
1	 INTRODUCTION .. 10	

1.1	 RELATIONSHIP WITH OTHER DELIVERABLES .. 11	
MS1 Deliverables: .. 12	

2	 STATE-OF-THE-ART ANALYSIS .. 13	
2.1	 EFFICIENT EXPLOITATION OF HETEROGENEOUS COMPUTATIONAL RESOURCES, INCLUDING
MULTI/MANY CORES CPUS, COMPUTING ACCELERATORS AND FPGAS ... 13	
2.2	 HIGH-PERFORMANCE PROCESSING AND MANAGEMENT OF DATA STREAMS ... 16	
2.3	 EFFICIENT DATA COLLECTION FROM SENSORS, IOT AND WEARABLE DEVICES IN CPSOS 19	
2.4	 DECENTRALIZED STRATEGIES FOR DATA DISSEMINATION AND ORGANIZATION IN CPSOS 20	
2.5	 EFFICIENT COMMUNICATION PROTOCOLS IN MULTI-HOMED SCENARIOS TARGETING CPSOS 21	
2.6	 DATA AND SOFTWARE ORCHESTRATION IN A VERTICAL CLOUD-EDGE CONTINUUM 23	
2.7	 RESILIENT, FAIL-SAFE AND ENERGY-EFFICIENT, SILICON BORN AI .. 23	

3	 REQUIREMENT ANALYSIS .. 25	
3.1	 REQUIREMENTS ON MISSION-CRITICAL DEPENDABLE SUBSYSTEM ... 25	

	 Safety-critical in avionics ... 25	
Spatial Isolation (ID_2) .. 25	
Temporal Isolation (ID_3): ... 25	
	 Real-time requirements in avionics .. 26	

Tight standalone WCET upper-bounds (ID_5): ... 26	
Reasonable concurrent WCET upper-bounds (ID_6): .. 26	
Monitoring features & interference channels identification (ID_7): .. 26	
Synchronous global system clock (ID_8): .. 26	
	 Software selection and operations for avionics ... 26	

Task & Communication scheduling (ID_13): .. 26	
RTOS (ID_14): ... 27	
Monitor the GPP from the IA accelerator (ID_16): .. 27	
	 Sensor and localization data management for avionics ... 27	

Periodic sensors real-time requirements (ID_17): .. 27	
Aperiodic sensors real-time requirements (ID_18): ... 27	
Periodic localization real-time requirements (ID_19): ... 27	
Aperiodic localization real-time requirements (ID_20): .. 28	
	 Flight plan and trajectories management in planes ... 28	

Aperiodic flight plan real-time requirements (ID_21): ... 28	
Periodic nearest real-time requirements (ID_23): .. 28	
	 Vehicle self-awareness in ADAS .. 28	

Determine location (ID_24): ... 28	
Perceive relevant objects (ID_25): ... 28	
	 Prediction and planning for ADAS .. 29	

Predict the future behaviour of relevant objects (ID_26): .. 29	
Create a collision-free and lawful driving plan (ID_27): ... 29	
Correctly execute and actuate the driving plan (ID_28): .. 29	
	 ADAS related communications ... 29	

Communicate and interact with other road users (ID_29): ... 29	
	 ADAS malfunction and under-performance detection ... 30	

Determine if specified nominal performance is not achieved (ID_30): ... 30	
Detect when degradation is not available (ID_31): .. 30	
Ensure safe mode transitions and awareness (ID_32): ... 30	
React to insufficient nominal performance and other failures via degradation (ID_33): ... 30	
Reduce system performance in the presence of failure for the fail-degraded mode (ID_34): 30	
Perform ODD functional adaption within reduced system constraints (ID_35): ... 31	

3.2	 REQUIREMENTS ON HUMAN-EMPOWERED INTELLIGENT SUBSYSTEM .. 31	
	 Performance monitoring, evaluation and assessment .. 31	

TEACHING D2.1 ICT-01-2019/№ 871385

TEACHING - 5 - January, 2020

Hardware observability (ID_9): .. 31	
Hardware observability (ID_10): .. 31	
Figures on performance requirements for AI-based personalization process (ID_90): .. 31	
Hardware requirement of the functional modules of the AIaaS (ID_101): .. 31	
AIaaS subsytem to manage internal module violations (104): ... 32	
Non-impairment of dependability (105): .. 32	
	 Network communication ... 32	

Data transfer for AIaaS federation (ID_72): ... 32	
Inter-edge AIaaS communication (ID_79): .. 32	
Network coverage and available protocols (ID_86): .. 32	
Cellular 3G/4G connection (ID_90): .. 33	
	 Software development and deployment .. 33	

Compatibility of developed SW with the chosen HW (92): ... 33	
Definition of learning functionalities of the AIaaS (ID_94): ... 33	
Definition of the possible pattern for the access of the Edge storage (ID_95): .. 33	
Common interface for functional modules of AIaaS (ID_96): ... 33	
AIaaS application definition (ID_97): .. 33	
	 Data and Metadata ... 34	

Common data format for the data brokering (ID_99): ... 34	
Common meta-data format for the data brokering (ID_100): .. 34	
Non-volatile storage for the AIaaS platform	 (ID_103): ... 34	

3.3	 REQUIREMENTS ON THE HIGH-PERFORMANCE COMPUTING AND COMMUNICATION INFRASTRUCTURE
AS A WHOLE .. 34	

	 Communication .. 34	
Communication of the AIaaS modules with the vehicle (ID_75) .. 34	
Communication of the vehicle with the AIaaS modules (ID_76): ... 34	
Intra-edge AIaaS communication (ID_78): .. 35	
Access to vehicle sensors’ data (ID_85): .. 35	
	 Reaction to state changes ... 35	

Detect changes in car state or context (ID_81): .. 35	
Perform ADAS adaptation for model fine tuning (ID_82): .. 35	
	 Software development, deployment and system description .. 35	

Software packaging and deployment	 (ID_87): .. 35	
Figures on data production rate and QoS requirements (ID_88): ... 36	
	 Data management ... 36	

Data brokering within the AIaaS platform (ID_98): .. 36	
Annotated data for AIaaS (avionics traces) (ID_106): ... 36	
	 Security ... 36	

Secure access from application to the adaptive system of the vehicle (ID_102): .. 36	
4	 DESIGN ... 37	

4.1	 HIGH-PERFORMANCE COMPUTING AND COMMUNICATION INFRASTRUCTURE (HPC2I) 38	
	 Conceptual architecture ... 39	
	 Information flows ... 39	

Automotive Use Case ... 40	
Avionics Use Case .. 41	

5	 PRELIMINARY EVALUATIONS ON TECHNOLOGIES, PROTOCOLS AND TOOLS 42	
5.1	 REPRESENTATION AND SIMULATION OF THE TEACHING CPSOS .. 42	
5.2	 AI TOOLKIT FOR EDGE DEVICES ... 44	
5.3	 PRELIMINARY EVALUATION OF GPU/FPGA PROGRAMMING TECHNOLOGIES 45	
5.4	 PERFORMANCE MEASUREMENT TOOLS IN A CPSOS CONTEXT ... 51	

	 Profiling safety-critical systems ... 52	
	 METrICS architecture .. 52	
	 METrICS intrusiveness ... 53	
	 Profiling Design Space ... 54	
	 METrICS in the TEACHING project .. 54	

5.5	 EFFICIENT PROCESSING AND MANAGEMENT OF DATA STREAMS .. 54	
	 Apache Storm ... 55	
	 Apache Flink ... 55	
	 WindFlow ... 57	

5.6	 COMMUNICATION PARADIGMS FOR IOT SENSORS AND WEARABLE DEVICES 57	
	 Node-centric communication paradigms ... 58	

TEACHING D2.1 ICT-01-2019/№ 871385

TEACHING - 6 - January, 2020

5.6.1.1	 WebSocket .. 59	
5.6.1.2	 REST - Representational state transfer ... 59	
5.6.1.3	 WAMP - Web Application Messaging Protocol .. 61	

	 Data-centric communication infrastructure ... 61	
5.6.2.1	 The Publish/Subscribe Paradigm .. 61	
5.6.2.2	 Message Queuing Telemetry Transport .. 62	
5.6.2.3	 Message Queuing Telemetry Transport - Sensor Network .. 63	
5.6.2.4	 Constrained Application Protocol ... 64	
5.6.2.5	 Extensible Messaging and Presence Protocol ... 64	
5.6.2.6	 Advanced Message Queueing Protocol ... 65	
5.6.2.7	 Apache KAFKA .. 65	

Kafka Terminology ... 66	
	 Preliminary design of the communication infrastructure .. 66	

5.7	 COMMUNICATION MECHANISMS FOR MOBILE VEHICULAR NETWORKS .. 67	
	 Dedicated Short Range Communications ... 68	

6	 CONCLUSIONS ... 71	

TEACHING D2.1 ICT-01-2019/№ 871385

TEACHING - 7 - January, 2020

List of Figures
Figure 1 - Depiction of the IIRA Viewpoints from and mapping of focus of TEACHING Deliverables
MS1 .. 11	
Figure 2 - Conceptual Architecture of HPC2I .. 38	
Figure 3 - Automotive Use Case .. 40	
Figure 4 - Avionics Use Case ... 41	
Figure 5 The modular architecture of CloudSim Plus .. 43	
Figure 6 Architectural overview of PureEdgeSim ... 44	
Figure 7 – Streaming on heterogeneous systems with multi-core CPUs and integrated GPUs 48	
Figure 8 - Streaming on a SoC composed of an ARM processor and an Intel FPGA 50	
Figure 9: Architecture of the METrICS measurement tool .. 52	
Figure 10: Completion time of a METrICS probe over 180000 runs .. 53	
Figure 11 The publisher/subscriber paradigm. ... 62	
Figure 12	MQTT-SN architecture. ... 63	
Figure 13 CoAP observer model architecture. ... 64	
Figure 14 AMQP model ... 65	

TEACHING D2.1 ICT-01-2019/№ 871385

TEACHING - 8 - January, 2020

List of Abbreviations

EC European Commission
WP Work Package

AI Artificial Intelligence
ML Machine Learning

AIaaS AI-as-a-Service
CPS Cyber-Physical System (CPS)

CPSoS Cyber-Physical Systems of Systems
ADAS Advanced driver-assistance systems

GPU Graphics processing unit
FPGA Field Programmable Gate Array

DSP Data Stream Processing
IoT Internet of Things

CUDA Compute Unified Device Architecture
VANET Vehicular Ad-hoc NETwork

RAN Radio Access Network
RTOS Real-Time Operating System

UC Use Case
ODD Operational Design Domain

TEACHING D2.1 ICT-01-2019/№ 871385

TEACHING - 9 - January, 2020

Executive Summary
This deliverable is aimed at providing an initial report on state-of-the-art analysis, a preliminary
requirements elicitation and conceptual design of the Distributed Computing and
Communication platform for CPSoS, that we refer as High-Performance Computing and
Communication Infrastructure (HPC2I). That is the infrastructure standing at the basis of
TEACHING platform and support the execution of project use cases.
The deliverable focuses on the several technical aspects impacting on the definition of the
HPC2I. It resorts to the scientific literature and project use cases for the identification and
analysis of the relevant research and technical challenges. Such challenges eventually
contribute to the elicitation of requirements, that are reported in a formal way with project-wide
identifiers.
Later in the deliverable is given the definition of a conceptual, high-level system architecture,
that is intended to be the basis on which to develop a concrete, full-fledged, architecture that
will be presented in deliverable D2.2.
Then, this deliverable summarizes some baseline tools and technologies that are suitable
candidates to be used for supporting the project activities.
Finally are drawn our conclusions.

TEACHING D2.1 ICT-01-2019/№ 871385

TEACHING - 10 - January, 2020

1 Introduction
A key claim of TEACHING is that an effective AI for the CPSoS should exhibit certain key
design features. Among them, the fact that machine intelligence is of distributed and pervasive
nature, and the AI components can be potentially deployed in every element of the CPSoS,
enabling to embed intelligence at the edge, close to where the information is produced by the
device or close to where the application consumes the AI predictions. As a consequence,
information processing should follow as much as possible principles of locality and
compositionality, respecting the inherently distributed nature of the SoS. This allows containing
the deluge of noisy, redundant, heterogeneous and fast flowing data produced by the CPSoS
elements, with seemingly impacting reductions in communication, storage and energy-
consumption costs. Local consumption of information can also be an advantage in scenarios of
unreliable connectivity or when data privacy is a key issue.
TEACHING focuses on the tools and mechanisms enabling the setup and the subsequent
exploitation of the distributed and heterogeneous computing platform enabling the pervasive
processing of data and allow the embedding of intelligence at the edge. Resources include
different kinds of computing systems, ranging from traditional to smaller resource/energy-
constrained devices, such as IoT, sensors or wearable devices. Specific activities are needed to
deal with the application deployment onto the computing platform, the related networks and
communications as well as on device programming and data storing. In fact, during the project
will be developed solutions for enabling information exchange, dissemination and gathering
among different devices, possibly belonging to different cyber-physical subsystems.
TEACHING will also deal with application deployment and tuning, both in traditional
computing solutions as well as on resource/energy-constrained devices. Advanced solutions
and approaches for the efficient management and processing of data streams will be
implemented possibly leveraging existing, state-of-the-art solutions.
Overall, all these activities will contribute to the definition of the High-Performance Computing
and Communication Infrastructure (HPC2I), supporting the execution of the TEACHING
platform and its use cases.
In such a context, this deliverable – State-of-the-art analysis and preliminary requirement
specifications for the computing and communication platform – is aimed at supporting the
definition of the TEACHING HPC2I by conducting an analysis of the solutions existing in the
scientific literature (Section 2), to report the results of a preliminary requirement specification
(Section 3), to present a conceptual architecture derived from the requirement elicitation
process (Section 4) and, finally, to introduce (Section 5) some key technologies that are
candidate to give a ground to the design and development activities aimed at the creation of the
HPC2I. Finally, are drawn our conclusions (Section 6).

TEACHING D2.1 ICT-01-2019/№ 871385

TEACHING - 11 - January, 2020

1.1 Relationship with other deliverables

Deliverables D1.1, D2.1, D3.1, D4.1 and D5.1 (complete deliverable titles are reported later in
this section), are intended to serve as a mean of verification for milestone MS1. That is the first
project milestone, named Release of the TEACHING design (requirements, specification and
architecture).

Figure 1 - Depiction of the IIRA Viewpoints from1 and mapping of focus of TEACHING Deliverables

MS1

The mapping of the viewpoints of the technical WPs, as well as the integration intentions of the
TEACHING technology bricks in domain use-cases is depicted in Figure 1. Basically, D1.1
(General system perspective), D2.1 (Computing and communication infrastructure) and D4.1
(AI-as-a-Service for CPSoS) delve into technological aspects supporting the development of
technologies enabling the definition of TEACHING platform. D3.1 (Engineering Methods and
Architecture Patterns of Dependable CPSoS) explores the methodological aspects ensuring that
TEACHING-supported CPSoS will be dependable. D5.1 (use case specifications) describes the
two TEACHING use cases along with specific technological requirements as well as the
challenges that use cases pose to TEACHING and its enabling technologies.

1 https://iiot-world.com/industrial-iot/connected-industry/iic-industrial-iot-reference-architecture/

D5.1

D3.1

D1.1
D2.1 D4.1

TEACHING D2.1 ICT-01-2019/№ 871385

TEACHING - 12 - January, 2020

MS1 Deliverables:

D1.1 Report on TEACHING related technologies SoA and derived CPSoS requirements
D2.1 State-of-the-art analysis and preliminary requirement specifications for the computing
and communication platform
D3.1 Initial Report on Engineering Methods and Architecture Patterns of Dependable CPSoS

D4.1 Initial report on the AIaaS system
D5.1 Initial use case specifications

TEACHING D2.1 ICT-01-2019/№ 871385

TEACHING - 13 - January, 2020

2 State-of-the-art Analysis
This section presents a state-of-the-art analysis providing an initial scientific ground to the
activities conducted by WP2. Being WP2 aimed at the definition and development of the
TEACHING computing and communication platform, the analysis conducted in this section
frames relevant existing results and put such works in the perspective of the WP goals. The
section summarizes contributions regarding the efficient exploitation of hardware resources
(both related to computing and communication aspects), as well as smart approaches on the
management of such resources.
The section mostly follows the Work package breakdown into tasks. In particular, Section 2.1
is related to Task 2.2 (High-level Efficient exploitation of multi/many-core CPUs, GPUs
and FPGAs), Section 2.2 presents state-of-the-art analysis for Task 2.3 (High Performance
Processing and Management of Data Streams), Section 2.3 links relevant contributes in the
scientific literature with the activities to be carried out with Task 2.4 (Sensors, IoT and
wearable devices in CPSoS: management, tuning and orchestration).
The remaining of this Section provides tailored information about relevant contributions in
scientific literature that could be investigated in the context of the activities to be conducted in
tasks that have not been started yet: task 2.5 - Efficient and decentralized information exchange
within single CPSoS and across different CPSoSs (Sections 2.4 and 2.5), task 2.6 - Seamless
application deployment in Cloud and Edge resources for the distributed provisioning of
computing capacity (Section 2.6) and task 2.7 - Silicon-born dependable AI (Section 2.7).

To ease the reading task, all the references to external work are provided as footnotes.

2.1 Efficient exploitation of heterogeneous computational resources,
including multi/many cores CPUs, computing accelerators and FPGAs

The efficient exploitation of multi-core CPUs and co-processors like GPUs and FPGAs is a
central goal of the TEACHING platform and of the run-time systems that will be developed
during the project. During the activities of T2.2, different dimensions of the problem will be
studied starting with the state-of-the-art. In terms of programming models, the general goal is
to raise the abstraction level provided to the user, who is a domain expert more than a system-
level programmer. For this purpose, two different families of approaches can be considered for
developing parallel applications on multicores: task-based parallel programming models and
skeleton-based or pattern-based programming approaches.
Task-based parallel programming tools are based on the general idea of implicitly or explicitly
expressing a graph of tasks connected by (control- or data-) dependencies. The underlying run-
time system is based on a pool of threads often pinned onto the logical cores of the CPUs. Firing
tasks are efficiently scheduled on such a pool (usually without having a centralized scheduler
but using lock-free queues and work-stealing techniques to balance the load). Examples of
libraries adopting this approach are Intel TBB2 and OmpSs3. Task-based approaches have been
enhanced over the years, with additional concepts like work-sharing tasks to exploit fine-
grained loop parallelism through the partitioning of the iteration space into chunks processed

2 James Reinders. 2007. Intel threading building blocks (First. ed.). O'Reilly & Associates, Inc., USA.
3 Barcelona Supercomputing Center, “OmpSs-2 Programming Model,” accessed: 2020-05-24. [Online]. Available:
https://pm.bsc.es/ompss-2.

TEACHING D2.1 ICT-01-2019/№ 871385

TEACHING - 14 - January, 2020

in parallel without the same concept of logical task. Regarding support to loop parallelism,
directive-based programming models like OpenMP and the aforementioned OmpSs allow users
to augment loop mapping onto CPUs and data sharing rules to designate compilers for
automatic parallel code generation. However, these models cannot handle irregular parallel
programs efficiently4. Heterogeneous parallel programming (e.g., involving support for CPU-
based and GPU-based computing) is suitable to be developed with task-based parallel
approaches. StarPU5 is an important project and a solid programming tool for building task
graphs and offloading their processing on heterogeneous CPU+GPU systems. To use StarPU,
the user is required to provide each task on all the available kinds of resources (CPU, CUDA,
OpenCL) with the declarations of memory regions to be used. StarPU’s runtime automatically
decides where tasks should be executed (thus the version to use). This is often done using some
heuristic solutions and all the required memory transfers to make task inputs available to the
right resource are done by the run-time system transparently and efficiently, by avoiding
additional and unnecessarily copies.
CPU-GPU co-scheduling plays a key role in heterogeneous programming systems. As said
before, work stealing is a common strategy to avoid load imbalance in the runtime. Instead of
keeping all workers busy most of the time, which may contribute to increase energy
consumption low-powered devices, both Intel TBB and OmpSs have developed sleep-based
strategies and mixed strategies based on exponential back-off. Other approaches6 tune hardware
frequency scaling to increase energy efficiency, balances7 the load on distributed memory, deal8
with data locality during the scheduling of tasks, and optimize9 task processing for memory-
bound applications. How to migrate all such scientific effort for hybrid systems featuring CPUs
and GPUs remains a challenge in the research.
Some recent attempts are directed to make task-based programming tools compatible with the
offloading of tasks on FPGA devices. OpenCL10 is a framework providing a uniform low-level
programming approach for various kinds of devices (CPU, GPU and FPGA). The device-side
language is a dialect of C (OpenCL C). OpenCL programmers can create kernels running on
the available devices and can offload tasks to them using command queues. This is a natural
way to port a task-based programming environment on top of OpenCL, exploiting its potential
to be run on FPGA devices. OpenMP extensions for supporting FPGAs are a hot topic of recent
research. The work11 by Sommer et al. provides and explicit way of offloading portions of an
application to FPGA. The work is based on automatic data transfers based on task dependencies.

4 S.Leeand, J.S.Vetter. Early Evaluation of Directive-Based GPU Programming Models for Productive Exascale Computing.
In IEEE/ACM SC, pages 1–11, 2012.
5 StarPU: A Unified Platform for Task Scheduling on Heterogeneous Multicore Architectures CCPE - Concurrency and
Computation: Practice and Experience, Special Issue: Euro-Par 2009, 23:187-198, February 2011
6 Haris Ribic and Yu David Liu. Energy-efficient Work-stealing Language Runtimes. In ACM ASPLOS, pag 513–528, 2014
7 VijayA. Saraswat, Prabhanjan Kambadur, Sreedhar Kodali, David Grove, and Sriram Krishnamoorthy. Lifeline-Based
Global Load Balancing. In PPoPP, page 201–212, 2011
8 Warut Suksompong, Charles E. Leiserson, and Tao B. Schardl. On the efficiency of localized work stealing. Information
Processing Letters, 116(2):100–106, Feb 2016
9 Shumpei Shiina and KenjiroTaura. Almost Deterministic Work Stealing. In ACM SC, 2019
10 https://www.khronos.org/opencl/
11 L. Sommer, J. Korinth, and A. Koch, “Openmp device offloading tofpga accelerators,” in2017 IEEE 28th International
Conference onApplication-specific Systems, Architectures and Processors (ASAP), July2017, pp. 201–205

TEACHING D2.1 ICT-01-2019/№ 871385

TEACHING - 15 - January, 2020

OmpSs has also been extended in a similar direction12 focusing on Xilinx FPGAs. At the thread
level, so without considering tasks, hthreads13 have been proposed as a unified programming
model to develop application threads running on CPU or on FPGA devices based on compile-
time decisions.

Another family of parallel programming framework adopt a philosophy based on the so-called
Structured Parallel Programming (SPP) methodology. SPP consists of the use of Parallel
Patterns, which are viable solutions to improve the quality and the efficiency of parallel
software development since long time14. The general idea is to push the design pattern
methodology, which is a de-facto standard practice for Object Oriented Programming, into the
Parallel Pattern perspective, with patterns that represent high-level abstract recipes to solve
recurrent problems in parallel computing. More concretely, when such patterns are directly
provided through high-level programming constructs that can be explicitly instantiated by the
developer, combined, and even nested in complex hierarchical structures, we speak about
Algorithmic Skeletons15. Skeleton-based frameworks have been developed to support parallel
programmers with the provisioning of standard programming language constructs that model
and implement common, parametric, and reusable parallel computation schemes that eventually
may be recognized as a practice of implementation of good parallel design patterns. As a matter
of fact, combination of parallel design patterns and algorithmic skeletons are exploited in
different well known parallel programming frameworks (e.g., Microsoft TPL16, FastFlow17,
SkePU18).

Pattern-based frameworks have notable advantages in terms of time-to-deploy of parallel
applications but also guarantee the automatic or semi-automatic applicability of different
optimization strategies19 as well as the development of autonomic management strategies20 to
achieve trade-offs between pure performance and energy consumption and, more generally,
QoS requirements and Service Level Agreements with the final application users. This essential
characteristic, of special importance for the TEACHING programming eco-system, is based on
the formal nature of such patterns/skeletons, which often allows the definition of cost models

12 Filgueras, E. Gil, D. Jim ́enez-Gonz ́alez, C. ́Alvarez, X. Mar-torell, J. Langer, J. Noguera, and K. A. Vissers,
“Ompss@zynq all-programmable soc ecosystem,” inThe 2014 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, FPGA ’14, Monterey,CA, USA - February 26 - 28, 2014, 2014, pp. 137–146
13 D. Andrews, R. Sass, E. Anderson, J. Agron, W. Peck, J. Stevens,F. Baijot, and E. Komp, “Achieving programming model
abstractions forreconfigurable computing,”Very Large Scale Integration (VLSI) Systems,IEEE Transactions on, vol. 16, no.
1, pp. 34–44, 2008
14 T. Mattson, B. Sanders, and B. Massingill. Patterns for Parallel Programming. Addison-Wesley Professional, 2004
15 M. Cole. Bringing skeletons out of the closet: A pragmatic manifesto for skeletal parallel programming. Parallel Comput.,
30(3):389–406, Mar. 2004
16 Microsoft. Task Parallel Library, 2017. https://msdn.microsoft.com/en-us/library/ dd460717(v=vs.110).aspx
17 M. Aldinucci, M. Danelutto, P. Kilpatrick, and M. Torquati, Fast- Flow: High-Level and Efficient Streaming on Multicore.
John Wiley & Sons, Ltd, 2017, ch. 13, pp. 261–280. [Online]. Available: https:
//onlinelibrary.wiley.com/doi/abs/10.1002/9781119332015.ch13
18 Öhberg, T., Ernstsson, A. & Kessler, C. Hybrid CPU–GPU execution support in the skeleton programming framework
SkePU. J Supercomput 76, 5038–5056 (2020). https://doi.org/10.1007/s11227-019-02824-7
19 K. Emoto and K. Matsuzaki. An automatic fusion mechanism for variable-length list skeletons  in sketo. International
Journal of Parallel Programming, 42(4):546–563, 2014
20 G. Mencagli and M. Vanneschi. Towards a Systematic Approach to the Dynamic Adaptation of Structured Parallel
Computations using Model Predictive Control. Cluster Computing, 2014, Springer. ISSN: 1386-7857, DOI: 10.1007/s10586-
014-0346-3

TEACHING D2.1 ICT-01-2019/№ 871385

TEACHING - 16 - January, 2020

of their performance (throughput and latency), energy consumption21 and are suitable for being
implemented on different kinds of architectures (like GPUs and FPGAs) by hiding this choice
to the final user through clear and homogeneous APIs for instantiating and using the skeletons
provided by the framework.

2.2 High-performance processing and management of data streams

CPSs pose urgent challenges from the programmability standpoint, where CPS-enabled
applications should provide at least two major characteristics: i) the capability to meet (near)
real-time requirements while processing data streams like the ones generated by the plethora
of sensors available in cyber-physical environments; ii) being able to exploit heterogeneous
hardware like the one available in embedded scenarios, i.e. low-power multi-core CPUs and
accelerators like embedded GPUs and FPGAs. These two features shall be provided with
sufficiently high-level programming abstractions to develop software with reduced time-to-
solution.
The programming paradigm adopted in the literature for processing streams is called Data
Stream Processing , which had its origin in the Database community with first-generation Data
Stream Processing Systems22,23 based on extensions of relational algebra languages to develop
applications able to continuously compute streaming analytics from unbounded input
sequences. Over the last years, to support traditional distributed environments like clusters and
a wider set of streaming applications dealing with both structured and non-structured data,
second-generation DSPSs like Apache Storm, Flink, Spark Streaming and many others have
been publicly released to the community. However, despite their pervasive diffusion in real-
world scenarios (e.g., social media analysis, networking, sensor networks) they are still
inadequate to represent programming frameworks suitable for the IoT and for CPSs too. The
main reason is twofold. From one side, their run-time systems do not scale on single shared-
memory multicore-enabled nodes24, due to the high overhead induced by their internal
components for data (de-)serialization, resource scheduling and inter-process communication.
Furthermore, they do not support any kind of accelerators, and their programming model, based
on the development of data-flow graphs of operators, does not expose features to keep track of
data locality, resource constraints and privacy that are key factors in the IoT.
Over the years, several research attempts have been conducted with the goal of making the DSP
paradigm and its enabling frameworks more suitable for the IoT and for CPSs. Some works
have focused on improving the scalability of the run-time systems on single nodes, by taking
advantage of the shared memory to introduce optimizations during the processing. Some

21 D. De Sensi, M. Torquati, and M. Danelutto. A reconfiguration algorithm for power-aware parallel applications. ACM
Trans. Archit. Code Optim., 13(4):43:1–43:25, Dec. 2016
22 William Thies, Michal Karczmarek, and Saman P. Amarasinghe. 2002. StreamIt: A Language for Streaming Applications.
In Proceedings of the 11th International Conference on Compiler Construction (CC ’02). Springer-Verlag, Berlin,
Heidelberg, 179–196
23 Daniel J. Abadi, Don Carney, Ugur Çetintemel, Mitch Cherniack, Christian Convey, Sangdon Lee, Michael Stonebraker,
Nesime Tatbul, and Stan Zdonik. 2003. Aurora: a new model and architecture for data stream management. The VLDB
Journal 12, 2 (August 2003), 120–139. DOI:https://doi.org/10.1007/s00778-003-0095-z
24 S. Zhang, B. He, D. Dahlmeier, A. C. Zhou and T. Heinze, "Revisiting the Design of Data Stream Processing Systems on
Multi-Core Processors," 2017 IEEE 33rd International Conference on Data Engineering (ICDE), San Diego, CA, 2017, pp.
659-670, doi: 10.1109/ICDE.2017.119

TEACHING D2.1 ICT-01-2019/№ 871385

TEACHING - 17 - January, 2020

prototypes following this direction are StreamBox25, LightSaber26 and BriskStream27. The first
two trade off scalability with latency by adopting an approach called morsel-driven parallelism
where inputs are first buffered into batches of continuous inputs, and the processing of a
pipeline of operators is dynamically scheduled on a pool of threads in a load balanced manner.
BriskStream instead adopts the continuous streaming model of traditional DSPSs, more
optimized for low-latency processing, and improves the scalability through the buffering of few
inputs that are processed as a whole by the user functions within the operators to reduce the
instruction footprint and the processor front-end stalls. However, although one step ahead
towards a better lightweight run-time system, these DSPSs do not support accelerators nor do
they expose programming abstractions for dealing with the IoT constraints explicitly.
DSPs more optimized for being executed on embedded devices are still at a preliminary stage
of research and development. EdgeWise28 is a recent work extending the popular Apache Storm
system by keeping its high-level API while completely re-designing its run-time system to be
more suitable for embedded resources. The effort is to remove the dedicated threading model
of Storm, which might impair performance on limited-resource architectures due to the fair
scheduling performed by the traditional OS. They propose a model where operators are logical
executors dynamically scheduled onto a fixed-size pool of threads according to application-
dependent scheduling policies.
Despite this progress, the research to target in a more effective way accelerators are still
incomplete. According to some preliminary works29, migrating some real-time streaming tasks
to GPUs is challenging due to the need of batch processing to enforce data parallelism on
devices as well as the problem of thread divergence that may cause unpredictable latency
spikes. To control this, they propose a rigid scheduling of GPU kernels in periods of fixed
length to provide guarantees on the latency. SABER30 is another system for streaming on GPUs.
It is based on morsel-driven parallelism, which is inadequate to keep low latency in case of live
streaming tasks (where we cannot assume that data are all available in memory like in offline
streaming analytics). Furthermore, they support only applications written with streaming
dialects of SQL, so not suitable to cover the complexity of applications for CPSs which, instead,
need APIs to enable the development of AI/ML tasks within the data-flow programming style
commonly adopted in DSP.

25 Hongyu Miao, Heejin Park, Myeongjae Jeon, Gennady Pekhimenko, Kathryn S. McKinley, and Felix Xiaozhu Lin. 2017.
StreamBox: modern stream processing on a multicore machine. In Proceedings of the 2017 USENIX Conference on Usenix
Annual Technical Conference (USENIX ATC ’17). USENIX Association, USA, 617–629
26 Georgios Theodorakis, Alexandros Koliousis, Peter Pietzuch, and Holger Pirk. 2020. LightSaber: Efficient Window
Aggregation on Multi-core Processors. In Proceedings of the 2020 ACM SIGMOD International Conference on Management
of Data (SIGMOD ’20). Association for Computing Machinery, New York, NY, USA, 2505–2521.
DOI:https://doi.org/10.1145/3318464.3389753
27 Shuhao Zhang, Jiong He, Amelie Chi Zhou, and Bingsheng He. 2019. BriskStream: Scaling Data Stream Processing on
Shared-Memory Multicore Architectures. In Proceedings of the 2019 International Conference on Management of Data
(SIGMOD ’19). Association for Computing Machinery, New York, NY, USA, 705–722.
DOI:https://doi.org/10.1145/3299869.3300067
28 Xinwei Fu, Talha Ghaffar, James C. Davis, and Dongyoon Lee. 2019. Edgewise: a better stream processing engine for the
edge. In Proceedings of the 2019 USENIX Conference on Usenix Annual Technical Conference (USENIX ATC ’19).
USENIX Association, USA, 929–945
29 Kai Zhang, Jiayu Hu, and Bei Hua. 2015. A holistic approach to build real-time stream processing system with GPU. J.
Parallel Distrib. Comput. 83, C (September 2015), 44–57. DOI:https://doi.org/10.1016/j.jpdc.2015.05.002
30 Alexandros Koliousis, Matthias Weidlich, Raul Castro Fernandez, Alexander L. Wolf, Paolo Costa, and Peter Pietzuch.
2016. SABER: Window-Based Hybrid Stream Processing for Heterogeneous Architectures. In Proceedings of the 2016
International Conference on Management of Data (SIGMOD ’16). Association for Computing Machinery, New York, NY,
USA, 555–569

TEACHING D2.1 ICT-01-2019/№ 871385

TEACHING - 18 - January, 2020

Other recent attempts have targeted traditional clusters of large servers equipped with GPU
PCI-express boards. One example is Gstream31. Its programming model to express operators
provides a simple interface where each operator is defined by extending specific base classes
and overriding three methods: one for the pre-processing phase, the second for the kernel phase,
the last for the post-processing step. The kernel phase is the one offloaded on the device. Despite
this clear separation of concerns, the kernel function requires a fine control of the batch size to
use, and the manual popping and pushing of data from sources and to producers. All these
activities are low level and error prone from the viewpoint of a standard user. Furthermore, no
abstraction is given to write the GPU kernel, because users need to instantiate directly CUDA
code within the kernel function. G-Storm32 proposes an extension of Apache Storm to enable
GPU processing. The idea is to introduce a new operator enabled to offload the processing of
an input batch to GPU. The good point with respect to Gstream is the higher-level interface: the
user provides only the fine-grained function executed over each input, while the batching and
the preparation of the CUDA kernel (through the Java library JCUDA) is done automatically
by the run-time system. However, the approach has some specific flaws. In particular, the input
buffering, processing, and the copy back of results is done without considering that the
applications can require more than one GPU-enabled operator, and data communication and
output routing between GPU-enabled operators should be done in a different way to avoid
useless copies and to keep the data on the device’s memory as much as possible to improve
performance.
For what regards DSPSs targeting FPGAs, the research still lacks deep studies on this topic.
Despite some attempts to implement on FPGAs specific streaming operators (e.g., windowed
aggregates and joins), no past paper has tried to provide a complete system to program entire
data-flow graphs with specific operators offloaded on FPGAs. The main paper which has
partially tried to face this problem is Glacier33, which provides some built-in operators
(typically the ones of relational algebra) on FPGAs but lacks extendibility to cover more
general-purpose tasks.
There are several open problems that represent challenges to enforce better programmability of
DSP applications on embedded resources. The first challenge is how to integrate data locality,
privacy and resource constraints while developing the data-flow graph of the application. Such
kinds of meta information should be provided to drive the preliminary steps of the application
deployment onto adequate resources. Second, the support for accelerators is still partial. To
effectively use GPUs and FPGAs, the programming model that we envision clearly goes beyond
the state-of-the-art. It will provide a high-level interface for implementing any streaming task,
by requiring to the programmer to express the business logic code of the operators through
lambda functions compliant with a set of acceptable signatures, while the kernel code to be
offloaded on the device is in charge of the run-time system, which will also provide
optimizations to enhance the co-existence of CPU-oriented and Accelerators-oriented operators
through efficient data exchange mechanisms. All these steps are towards a new programming
model for CPSs which will represent one of the key-enabling technologies proposed in the
TEACHING project.

31 Y. Zhang and F. Mueller, "GStream: A General-Purpose Data Streaming Framework on GPU Clusters," 2011 International
Conference on Parallel Processing, Taipei City, 2011, pp. 245-254, doi: 10.1109/ICPP.2011.22
32 Z. Chen, J. Xu, J. Tang, K. Kwiat and C. Kamhoua, "G-Storm: GPU-enabled high-throughput online data processing in
Storm," 2015 IEEE International Conference on Big Data (Big Data), Santa Clara, CA, 2015, pp. 307-312, doi:
10.1109/BigData.2015.7363769
33 Rene Mueller, Jens Teubner, and Gustavo Alonso. 2009. Streams on wires: a query compiler for FPGAs. Proc. VLDB
Endow. 2, 1 (August 2009), 229–240. DOI:https://do.org/10.14778/1687627.1687654

TEACHING D2.1 ICT-01-2019/№ 871385

TEACHING - 19 - January, 2020

2.3 Efficient data collection from Sensors, IoT and wearable devices in
CPSoS

Advances in engineering enabled the development of the internet-of-things (IoT) to understand,
interface, interact and engineer the physical world (systems). In more words, interconnecting
billions of smart devices allows us to monitor and extract data about both the physical and the
cyber communities. However, deploying a multitude of wireless sensors and agents on different
application domains (e.g., environmental, healthcare, smart interconnected vehicles and trucks,
smart buildings) leads not only to the hard task for communicating massive amounts of
heterogeneous data, but also requires developing efficient strategies for the system modeling
through the sensed data while overcoming the energy wall34.
The IoT paradigm is referred by Bogdan et al. to a “living” interconnection of uniquely
identifiable smart embedded systems or things (e.g., sensors, actuators, mobile devices) with
deeply embedded cyber capabilities for sensing, processing and communicating the
accumulated large amounts of heterogeneous data about the world to computational nodes for
real-time analysis, interpretation and determination of closed-loop control strategies. One
fundamental promising advantage, which the IoT brings, is the capability to autonomously and
trustworthy process high volume of data for deciphering not only the structural and dynamical
patterns of complex systems, but also for providing informed and robust control decisions.
In the smart city domain that is akin to the one of TEACHING use cases (for a detailed
description refer to deliverable D5.1), the IoTs monitor the cross-dependencies between
autonomous or semi-autonomous transportation and human mobility comfort, constructs
dynamical coupled equations for sensitivity analysis and determines the best control decisions
(e.g., controls the human mobility and adapts autonomous driving style to the best comfort of
a customer).

To achieve such goals, the IoT must possess built-in intelligence / analytics capable of:
(1) extracting prescriptive information in terms of patterns and statistical

characteristics of the observed processes that lead to compact system models (the term
compact refers to models with minimum number of parameters given the complexity of
the investigated complex system);

(2) provide predictive power by constructing causal compact system models that can
explain what might happen to a set of variables or things of the whole if specific changes
/ perturbations are applied to other parts of the system.

The synergetic coupling of physical and cyber worlds raises a few grand challenges35:

• What is the appropriate compact model that captures the characteristics of cyber and
physical processes and facilitates the analysis, design and optimization?

• What compact yet accurate models should be developed to enable the design of large-
scale autonomous IoT systems-of-systems?

34 P. Bogdan, M. Pajic, P. P. Pande and V. Raghunathan, "Making the Internet-of-Things a reality: From smart models,
sensing and actuation to energy-efficient architectures," 2016 International Conference on Hardware/Software Codesign and
System Synthesis (CODES+ISSS), Pittsburgh, PA, 2016, pp. 1-10.
35 Y. Xue, S. Rodriguez and P. Bogdan, "A spatiotemporal fractal model for a CPS approach to brain-machine-body
interfaces", Design Automation & Test in Europe Conference & Exhibition (DATE), pp. 642-647, 2016

TEACHING D2.1 ICT-01-2019/№ 871385

TEACHING - 20 - January, 2020

TEACHING projects captures and embeds several fundamental concepts of CPSoS like
sensing, networking, and computing. This process enables description of a physical
phenomenon like the comfort status of a driver or the life prediction of a complex system and
leverage the ubiquitous communication paradigm to achieve a global model.

2.4 Decentralized strategies for data dissemination and organization in
CPSoS

The aspects of decentralized communication and data management in TEACHING mostly
apply to the vehicle use case. In fact, with the continuous advancements and developments of
AI and communication technologies, an increased amount of smarter transportation vehicles is
circulating in the road. These vehicles are equipped with a myriad of advanced sensors,
computing, and communication technologies. Such a complex system that integrates
computing, communication and control technologies can be seen a cyber-physical system with
a closed feedback loop between the cyber process and the physical process36.
Particularly, by integrating wireless communications interfaces on board, a running vehicle can
exchange information with its surrounding, to enable a safer and more comfortable experience.
In practice, vehicles can dynamically form a wireless network on the road, the so called
Vehicular Ad-hoc NETwork (VANET). By employing different kinds of communication, such
as vehicle-to-vehicle and vehicle-to-infrastructure, VANETs can support a wide variety of
applications37. For example, in the context of TEACHING the VANET can be used to
disseminate relevant data about the model to choose the proper driving model in accordance
with the surrounding environment.
In terms of data dissemination protocol, a major challenge is related to the dynamcity of the
vehicles and the consequent change of topology. To tackle this problem, several adaptive
approaches have been proposed. For example, DV-CAST38 uses periodic beacon messages to
create and maintain a local dissemination topology. The protocol DRIVE39 aims to propagate
data in an enclosed area of interest, without maintain a neighbor list, in order to reduce the delay
of the propagation. RTAD40 proposes an adaptive meta approach, in which each vehicle is able
to choose the most appropriate dissemination protocol in order to adapt to the current situation
and surrounding environment. SRD41 proposed a push-based dissemination protocol that needs
only local topology information gathered with periodic beacon messages.

36 Jia, Dongyao, et al. "A survey on platoon-based vehicular cyber-physical systems." IEEE communications surveys &
tutorials 18.1 (2015): 263-284.
37 Ghebleh, Reza. "A comparative classification of information dissemination approaches in vehicular ad hoc networks from
distinctive viewpoints: A survey." Computer Networks 131 (2018): 15-37.
38 Tonguz, Ozan K., Nawaporn Wisitpongphan, and Fan Bai. "DV-CAST: A distributed vehicular broadcast protocol for
vehicular ad hoc networks." IEEE Wireless Communications 17.2 (2010): 47-57
39 Villas, Leandro Aparecido, et al. "Drive: An efficient and robust data dissemination protocol for highway and urban
vehicular ad hoc networks." Computer Networks 75 (2014): 381-394.
40 Sanguesa, Julio A., et al. "RTAD: A real-time adaptive dissemination system for VANETs." Computer Communications
60 (2015): 53-70.
41 Wisitpongphan, Nawaporn, et al. "Broadcast storm mitigation techniques in vehicular ad hoc networks." IEEE Wireless
Communications 14.6 (2007): 84-94.

TEACHING D2.1 ICT-01-2019/№ 871385

TEACHING - 21 - January, 2020

Finally, P2PCC42 is an hybrid peer-to-peer protocol in which the information among the
vehicles is exchanged according to a probabilistic model. If the information is not available,
vehicles will communicate with the centralized server.

2.5 Efficient communication protocols in multi-homed scenarios targeting
CPSoS

Most of the devices involved in a CPS and then the CPSoS are supposed to be small sized
objects equipped with a limited amount of power resources. Although nowadays the concept of
CPS has extended to more complex systems, the ICT field provides many protocols and
paradigms to enable communications among the devices of a CPS or CPSoS, as well as the
communication among the devices and service communication entities. Many of the
applications for CPSs involve entities that need to communicate with each other on the move.
A first example of standard definition for mobility scenario is provided by 3GPP, which has
defined the Narrow-Band IoT (NB-IoT)43 for low bandwidth and low power consuming
devices. But due to the increasing demand for redundancy and some also for a greater
throughput paradigm such as the Internet of Multimedia Things (IoMT)44 has been defined to
fulfil IP broadband requirements coming from Mission Critical Communications applications45
that are mainly based on the IoT communication. In the scenario of CPSs where the involved
devices are mobile, IoT multihoming and multiple-RAN (Radio Access Network) connectivity
management, including automatic air interface selection and optimal weighted load-balancing
between interfaces, are challenges for the reliability of future networks. Without reliable
mechanisms for multihoming and load-balancing of multiple interfaces, all the Mission Critical
Communication could not function. Mobility, redundancy, and bandwidth requirements may
be transferred, in an CPS ecosystem, from the physical devices to the network elements, but
wherever it resides, the redundancy and load-balancing function of mobile and non-mobile
devices is dependent on the mechanisms for RAN multihoming. For the mobile
communications Locator/ID Separation Protocol LISP46 has recognized as a serious candidate
for 5G standardization and intensively backed-up by a IETF (Internet Engineering Task Force)
Work Group, LISP offers mobility, multihoming, and load-balancing that have the advantage
to be applied with no changes in the Internet architecture (directly at the mobile IoT element)47
and furthermore can be perfectly matched with SDN (Software Defined Networks) that
represent another highlight of 5G architectures. A significant support for mobile
communication for CPSs is provided by MEC-based (Mobile Edge Computing)48 infrastructure
and Fog Computing for IoT, as the processing can take place distributed, where the objects are,

42 Kumar, Neeraj, and Jong-Hyouk Lee. "Peer-to-peer cooperative caching for data dissemination in urban vehicular
communications." IEEE Systems Journal 8.4 (2013): 1136-1144.
43 NB-IOT-feature list, Release 13 (LTE Advanced Pro), 3GPP, http://www.3gpp.org/images/PDF/R13 IOT rev3.pdf
44 S. A. Alvi, B. Afzal, G. A. Shah, L. Atzori, and W. Mahmood, “Internet of multimedia things: vision and challenges,” Ad
Hoc Networks, vol. 33, pp. 87–111, 2015.
45 M. J. Peltola, A. University, and H. Hammainen, “Economic feasibility of mobile broadband network for public safety and
security,” in Proceedings of the 11th IEEE International Conference on Wireless and Mobile Computing, Networking and
Communications, WiMob 2015, pp. 67–74, are, October 2015.
46 D.Farinacci,V.Fuller,D.Meyer,andD.Lewis,“The Locator/ID Separation Protocol (LISP),” RFC Editor RFC6830, 2013.
47 W. Ramirez, X. Masip-Bruin, M. Yannuzzi, R. Serral-Gracia, A. Martinez, and M. S. Siddiqui, “A survey and taxonomy of
ID/Locator Split Architectures,” Computer Networks, vol. 60, pp. 13–33, 2014.
48 “Mobile Edge Computing (MEC); Service Scenarios,” in ETSI Group Specification, 2015, http://www.etsi.org/deliver/etsi
gs/ MEC-IEG/001 099/004/01.01.01 60/gs MEC-IEG004v010101p .pdf.

TEACHING D2.1 ICT-01-2019/№ 871385

TEACHING - 22 - January, 2020

thus reducing communication delays to a central processing Cloud. In this scenario the mobility
could refer to the mobility of the components of a CPS (devices, sensors, IoT gateways etc.)
following the global understanding of host/ user mobility; or also to Virtual Machine Mobility
(VMM,) from one Edge Cloud to the other, concept also known as “Follow-Me Cloud,” a
method for interworking of federated clouds and distributed mobile networks49. The LISP
protocol is a recognized solution for both the above-mentioned mobility cases, thus being
differentiated from other mobility solutions. Furthermore, it is a very good option for
multihoming solutions. Open-source LISP implementation are Open Overlay Router (OOR)50
and IBM Watson51.
LISP52 is a host mobility protocol and a Virtual Machine Mobility protocol. In case of CPS, it
can be used as host mobility, and the endpoint identifier-based addressing can be adopted as
method for simplification and abstraction of network infrastructure and the RAN used as point
of attachment in the network. LISP can be used for the migration of the localized processing
function, for example, the migration of the IoT gateway functions from one RAN Cloud to
another. Vehicle-to-vehicle communication and self-driving cars imply a lot of processing that
can only be performed at the edge of the network, in the Edge Clouds, in order to minimize the
delays. Migration of virtual machines during their run using LISP is a method for the processing
power to follow the intelligent devices in IoT. For VMM (Virtual Machine Mobility), the
processing power and applications can follow the mobility of the “thing”. The benefits of using
LISP for linking the Virtual Machine Mobility to the user mobility were already demonstrated
by some experimental work53. Mobility management RFCs proposals also refer to LISP as one
candidate solution. “Mobility Management for 5G Network Architectures Using Identifier-
Locator Addressing”54 specification describes the Mobility Management Architecture for 5G
Networks Using Identifier-Locator Addressing in IPv6 for virtualized mobile
telecommunication networks. Identifier-Locator addressing differentiates between location and
identity of a network node, and it is considered the key method for 5G mobility55. In case of
CPSs supporting critical infrastructure elements, failover mechanisms are essential in a network
that is connected to multiple providers, while still being reachable via the same address (most
probably an IPv6 address, but endpoint identifier addressing is very permissive). LISP
implementations allow the setting of prioritization methods (weighting) for the parallel
connected RANs networks, though providing load-balancing for enhance throughput, not just
back-up connectivity.

49 T. Taleb and A. Ksentini, “Follow Me cloud: interworking federated clouds and distributed mobile networks,” IEEE
Network, vol. 27, no. 5, pp. 12–19, 2013.
50 “Open Overlay Router (OOR),” http://www.openoverlayrouter .org.
51 “IBM Watson,” https://www.ibm.com/watson
52 A. Rodrıguez Natal, L. Jakab, M. Portoles et al., “LISP-MN: mobile networking through LISP,” Wireless Personal
Communications, vol. 70, no. 1, pp. 253–266, 2013.
53 S. Secci, P. Raad, and P. Gallard, “Linking virtual machine mobility to user mobility,” IEEE Transactions on Network and
Service Management, vol. 13, no. 4, pp. 927–940, 2016.
54 J. Mueller and T. Herbert, Mobility Management for 5G Net- work Architectures Using Identifier-locator Addressing,
2016, https://tools.ietf.org/html/draft-mueller-ila-mobility-01.
55 P. Rost, A. Banchs, I. Berberana et al., “Mobile network architecture evolution toward 5G,” IEEE Communications
Magazine, vol. 54, no. 5, pp. 84–91, 2016.

TEACHING D2.1 ICT-01-2019/№ 871385

TEACHING - 23 - January, 2020

2.6 Data and software orchestration in a vertical Cloud-Edge continuum

Edge computing is an approach that has been proposed to let the computation be performed
closer to the source of the workload generation. Basically, edge computing outdoes the
traditional, cloud concept, by pushing applications, data and computing power away from
centralized points to locations closer to the end user, to interact with the physical world56. Edge
computing can be achieved either mostly on the edge or in strong interaction with a cloud57.
This last scenario creates a computational continuum spanning from clouds to edge resources
and allowing the joint exploitation of resources belonging the two platforms. In this setup, Edge
computing can be fruitfully exploited to support AI-based solutions, as it has been
demonstrated, by different evidences published in the scientific literature (see e.g., the work
from Li He et al58 and references therein). In spite of the very recent conception of the edge
computing concept, some technological solutions addressing the needs of orchestrating edge-
oriented applications have been proposed. Among them KubeEdge59 is getting momentum. It
is aimed at extending native containerized application orchestration capabilities to hosts at
Edge.
An alternative very relevant approach is represented by the Osmotic computing60. Osmotic
computing is a quite recently proposed paradigm to support the efficient execution of IoT
services and applications at the edge. This paradigm is founded on the need for a holistic
distributed system abstraction enabling the deployment of lightweight microservices on
resource-constrained IoT platforms at the edge, coupled with more complex microservices
running on large-scale datacenters. This paradigm is driven by the significant increase in
resource capacity/capability at the network edge, along with support for data transfer protocols
that enable such resources to interact more seamlessly with datacenter-based services.

2.7 Resilient, Fail-safe and energy-efficient, silicon born AI

Autonomous vehicles are an emerging research field where further research needs to be done.
As a result, numerous authors are developing new AI models to improve the performance of
these vehicles. However, the dataset creation for this application is not trivial due to the
difficulty to find specific scenarios that fit with the desired ones while ensuring the safety and
security as well as the privacy of the pedestrian, vehicles, etc. in the area. During tests of sensor
stability e.g., adversarial attacks, unforeseen reactions cannot be excluded. Therefore, there is
a need to find another approach to generate these datasets in a fast and efficient way. At the
same time, these new algorithms and models need to be tested and evaluated, which doing so
in a real vehicle contain a risk. Simulations will always only be as good as the model they
represent, why real-world data is essential. A solution to the earlier mentioned challenges is the
setup of a miniaturized vehicle that is equipped with state-of-the-art sensors. This way

56 Satyanarayanan, Mahadev. "The emergence of edge computing." Computer 50.1 (2017): 30-39.
57 Shi, Weisong, et al. "Edge computing: Vision and challenges." IEEE Internet of Things Journal 3.5 (2016): 637-646.
58 Li, He, Kaoru Ota, and Mianxiong Dong. "Learning IoT in edge: deep learning for the internet of things with edge
computing." IEEE Network 32.1 (2018): 96-101.
59 https://kubeedge.io/en/
60 M. Villari, M. Fazio, S. Dustdar, O. Rana and R. Ranjan, "Osmotic Computing: A New Paradigm for Edge/Cloud
Integration," in IEEE Cloud Computing, vol. 3, no. 6, pp. 76-83, Nov.-Dec. 2016.

TEACHING D2.1 ICT-01-2019/№ 871385

TEACHING - 24 - January, 2020

developments of algorithms and models can be speeded up. As regulations for safety and
security as well as privacy restrictions can be easily overcome while having the benefits of real-
world sensor data. Especially in the field of autonomous mobile cars there already is some
research going on. With the open-source project named DonkeyCar61 being the most well-
known example. The use of a reduced size vehicle in order to develop and test new algorithms
has been implemented by multiple authors due to multiple reasons such as safety, security or
cost efficiency. An example of this is the project of Qi Z. et al.62 where a DonkeyCar with a
camera sensor was used to successfully implement algorithms based on reinforcement learning.
Similarly, T. Do et al.63 proposed a monocular vision-based autonomous vehicle prototype
using Deep Convolutional Neural Networks. This system was based on a small-scale vehicle
following the approach of Qi Z. et al achieving a final accuracy of 89.04% on the steering and
speed decision. However, these systems were based on a single sensor. This can lead to
problems due to possible noise in the data from the camera sensor as well as vulnerabilities to
adversarial attacks64. At the same time, camera sensor data may not be reliable when driving in
dark scenarios or under bad weather conditions65. Therefore, we propose to integrate multiple
sensors leading to a sensor fusion approach where the data from different sensors will be used
to complement each other.

61 https://www.donkeycar.com/
62 Zhang Qi and Du Tao. Self-driving scale car trained by deep reinforcement learning. ArXiv, abs/1909.03467, 2019.
63 Q. Dang T. Do, M. Duong and M. Le. Real-time self-driving car navigation using deep neural network. 2018 4th International
Conference on Green Technology and Sustainable Development (GTSD), Ho Chi Minh City, 2018, abs/1909.03467:7–12,
2018.
64 Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati, Chaowei Xiao, Atul Prakash, Tadayoshi Kohno,
and Dawn Song. Robust Physical-World Attacks on Deep Learning Models. arXiv:1707.08945 [cs], April 2018.
arXiv:1707.08945.
65 F. Nobis, M. Geisslinger, M. Weber, J. Betz, and M. Lienkamp. A deep learning-based radar and camera sensor fusion
architecture for object detection. 2019 Sensor Data Fusion: Trends, Solutions, Applications (SDF), Bonn, Germany, 2019,
pages 1–7, 2019.

TEACHING D2.1 ICT-01-2019/№ 871385

TEACHING - 25 - January, 2020

3 Requirement Analysis
Requirements analysis in TEACHING has been conducted in way that ensure a project-level
coordination and minimize the risk of inconsistencies between different WPs. TEACHING
consortium developed a centralized repository where all the requirements of the project have
been collected and indexed (by assigning to each of them a unique ID). As a consequence, this
section reports all those requirements that have an impact on WP2 but some requirements could
be also reported in different deliverables, with the same ID, when an impact is envisioned in
other WPs. As matter of fact, the design of the architecture of the high-performance computing
and communication infrastructure (HPC2I) will be the output of the requirement analysis, and
will be presented in the next deliverables of WP2. However, in Section 4 of this deliverable we
anticipate some key concepts around which the overall architecture of HPC2I will be realized.
As a consequence, the remaining of this section is organized highlighting the requirements
posed to the platform by taking into account such concepts. Basically, in HPC2I can be
envisioned two main subsystems: A Mission-critical dependable system and a Human-
empowered Intelligent subsystem. The former is aimed at designing the CPSoS subsystems that
are devoted to support mission-critical applications (e.g., Advanced driver-assistance systems,
ADAS in short) running on on-premise specialized hardware and software co-located the
controlled system. The latter is devoted to the design of the CPSoS subsystems dealing with the
actual collection, analysis and exploitation of the feedback of humans to make, overall, the
CPSs smarter. This last set of subsystems run on general-purpose hardware organized in a
computational continuum spanning from remote clouds to edge devices co-located with on-
premise resources.

3.1 Requirements on Mission-critical Dependable subsystem

 Safety-critical in avionics

Spatial Isolation (ID_2): Spatial isolation should be ensured in the TEACHING heterogeneous
setup both at software and hardware level. It includes: between the cores (usually thanks to an
MMU), between the regular CPU and the accelerator (usually with explicit communication
channels only), and inside the accelerator itself if it maps several machine learning algorithms.
Impacts on WP: 1, 2, 3, 4

Priority: High
Domain: Avionics

Temporal Isolation (ID_3): Temporal isolation should be ensured in the TEACHING
heterogeneous setup both at software and hardware level. It includes: between the cores (usually
thanks to periodic scheduling), between the regular CPU and the accelerator (usually with
explicit communication channels only), and inside the accelerator itself if it maps several
machine learning algorithms.

Impacts on WP: 1, 2, 3, 4
Priority: High

Domain: Avionics

TEACHING D2.1 ICT-01-2019/№ 871385

TEACHING - 26 - January, 2020

 Real-time requirements in avionics

Tight standalone WCET upper-bounds (ID_5): The worst-case execution time of the
application tasks should allow to be tightly bounded with respects to execution and
communication time if the task is running standalone. It includes regular tasks running on the
generic core, and AI algorithms running on the accelerator

Impacts on WP: 1, 2, 3, 4
Priority: High

Domain: Avionics

Reasonable concurrent WCET upper-bounds (ID_6): While running in a multi-core concurrent
execution context, the worst-case execution time of the application tasks should provide a
reasonable upper bound, with safety margins not offsetting the benefits of concurrent /
accelerated execution, and actually controlling over-provisioning.

Impacts on WP: 1, 2, 3, 4
Priority: High

Domain: Avionics

Monitoring features & interference channels identification (ID_7): The regular software, the
AI software, the regular cores and the accelerator should all provide some monitoring features
allowing us to monitor the behavior of the software on the hardware with regards to timing
interference. The certification standards enforce us to identify all possible timing interference
channels.
Impacts on WP: 1, 2, 3, 4

Priority: Critical
Domain: Avionics

Synchronous global system clock (ID_8): Multi-core real-time systems requires a synchronous
clock for all the cores in the system to fulfill with real-time scheduling rules limiting the timing
interference level. time offset between local clocks is manageable, but clock drift is not allowed.

Impacts on WP: 1, 2, 3, 4
Priority: Critical

Domain: Avionics

 Software selection and operations for avionics

Task & Communication scheduling (ID_13): Eliminating / Bounding timing interference will
require to apply rules on task and communication scheduling.
Impacts on WP: 2, 5

Priority: High

TEACHING D2.1 ICT-01-2019/№ 871385

TEACHING - 27 - January, 2020

Domain: Avionics

RTOS (ID_14): CPS applications from the avionic UC being real-time and safety-critical, we
require to run them with an RTOS that can guarantee scheduling of periodic tasks. Preventing
preemption is not enough. The real-time operating system is responsible from providing the
required task activation patterns for both synchronous periodic tasks, and asynchronous
aperiodic tasks. The RTOS is also responsible for detecting deadline misses associated with
these tasks.
Impacts on WP: 2, 5

Priority: High
Domain: Avionics

Monitor the GPP from the IA accelerator (ID_16): Monitoring information of the software
running on the GPP hardware has to be send / made accessible from the IA accelerator without
significantly impacting timing interference.

Impacts on WP: 2, 5
Priority: Low

Domain: Avionics

 Sensor and localization data management for avionics

Periodic sensors real-time requirements (ID_17): Every sensor outputs data are generated
every 200ms (5Hz periodic task), with a deadline equals to the period. Those data can possibly
partially or fully be marked as invalid, depending on the flight conditions.

Impacts on WP: 2, 5
Priority: High

Domain: Avionics

Aperiodic sensors real-time requirements (ID_18): New sensors parameters asynchronously
set by the pilot should be taken into account in the next sensor operational cycle, implying a
deadline of 200ms.
Impacts on WP: 2, 5

Priority: High
Domain: Avionics

Periodic localization real-time requirements (ID_19): LOCC1 should operate as a periodic task
at a cycle frequency of 200ms (5Hz) to match with the sensors’ outputs. The low frequency
BCP needs to be computed by LOCC2 every 5000ms. The magnetic deviation has to be updated
by LOCC3 every 1600ms. Finally, the performance is computed every 1000ms by LOCC4. All
these tasks have a deadline matching their period.

TEACHING D2.1 ICT-01-2019/№ 871385

TEACHING - 28 - January, 2020

Impacts on WP: 2, 5

Priority: High
Domain: Avionics

Aperiodic localization real-time requirements (ID_20): New localization parameters
asynchronously set by the pilot should be taken into account in the next operational cycle of the
related task, implying a 200ms deadline for BCP related, 5s for magnetic variation related, and
1s for performance related.
Impacts on WP: 2, 5

Priority: High
Domain: Avionics

 Flight plan and trajectories management in planes

Aperiodic flight plan real-time requirements (ID_21): After the modification of a flight plan,
the new guidance information should be produced in less than 15s. Any change to a flight plan
should perform a visual feedback to the pilot in less than 2s. The first two legs of a newly
modified flight plan shall be available in less that 5s.

Impacts on WP: 2, 5
Priority: High

Domain: Avionics

Periodic nearest real-time requirements (ID_23): The nearest airport list shall compute by task
NEARP1 in less than 3s, and displayed in less than 2s.

Impacts on WP: 2, 5
Priority: High

Domain: Avionics

 Vehicle self-awareness in ADAS

Determine location (ID_24): CPS has to be able to determine its location in relation to the
ODD. The vehicle has to be able to decide if it is inside or outside of a location-specific ODD.
The location in the ODD may be required, depending on the item definition.

Impacts on WP: 1, 2, 3, 5
Priority: High Low

Domain: Automotive

Perceive relevant objects (ID_25): All entities that an automated driving system requires for its
functional behavior have to be perceived, optionally pre-processed, and provided correctly. The

TEACHING D2.1 ICT-01-2019/№ 871385

TEACHING - 29 - January, 2020

highest priority is placed on entities with an associated risk of collision. Sample entities include
dynamic objects (e.g., other road users and characteristics of the respective movement), static
instances (e.g., road boundaries, traffic guidance and communication signals) and obstacles.

Impacts on WP: 1, 2, 3, 5
Priority: High

Domain: Automotive

 Prediction and planning for ADAS

Predict the future behaviour of relevant objects (ID_26): The relevant environment model
needs to be extended by the predicted future state. The aim is to create a forecast of the
environment. The intention of the relevant objects have to be interpreted in order to form the
basis for predicting future motion.
Impacts on WP: 1, 2, 3

Priority: High
Domain: Automotive

Create a collision-free and lawful driving plan (ID_27): To ensure a collision-free and lawful
driving policy, the following has to be respected:

- Maintain a safe lateral and longitudinal distance to other objects.
- Comply with all applicable traffic rules.
- Consider potential areas where objects may be occluded.
- In unclear situations the right of way is given, not taken.

Impacts on WP: 1, 2, 3, 5

Priority: High
Domain: Automotive

Correctly execute and actuate the driving plan (ID_28): The corresponding actuation signals
for lateral and longitudinal control have to be generated based on the driving plan.
Impacts on WP: 1, 2, 3, 5

Priority: High
Domain: Automotive

 ADAS related communications

Communicate and interact with other road users (ID_29): Automated driving vehicles are
required to communicate and interact with other road users, depending on the ODD and the use
cases.
Impacts on WP: 1, 2, 3, 5

Priority: Medium

TEACHING D2.1 ICT-01-2019/№ 871385

TEACHING - 30 - January, 2020

Domain: Automotive

 ADAS malfunction and under-performance detection

Determine if specified nominal performance is not achieved (ID_30): Any element of CPS can,
either on its own or in combination with others, result in adverse behavior. Therefore,
mechanisms are required to detect the adverse nominal performance of the system.
Impacts on WP: 1, 2, 3

Priority: High
Domain: Automotive

Detect when degradation is not available (ID_31): It has to be assured that a possible
unavailability of the fail-degraded capability is detected. If the degradation strategies depend
on the degradation reason, the degradation reason has to be identified.

Impacts on WP: 1, 2, 3
Priority: Medium

Domain: Automotive

Ensure safe mode transitions and awareness (ID_32): Ensure that mode transitions are
performed correctly and controlled by the vehicle operator affected if necessary. The vehicle
operator affected has also to be aware of the current mode and their responsibility deriving from
it. For example, actuating an automated mode is permitted only when inside the ODD, and it
will be deactivated prior to leaving the ODD or as a result of the vehicle operator taking control
again.

Impacts on WP: 1, 2, 3, 4, 5
Priority: High

Domain: Automotive

React to insufficient nominal performance and other failures via degradation (ID_33): Due to
possibly unavailable nominal performance capabilities and other failures (e.g., based on
hardware faults), CPS has to degrade within a well-defined amount of time.
Impacts on WP: 1, 2, 3, 4

Priority: High
Domain: Automotive

Reduce system performance in the presence of failure for the fail-degraded mode (ID_34): The
reaction in case of failures during fail-degraded mode has to be defined.
Impacts on WP: 1, 2, 3, 4

Priority: High

TEACHING D2.1 ICT-01-2019/№ 871385

TEACHING - 31 - January, 2020

Domain: Automotive

Perform ODD functional adaption within reduced system constraints (ID_35): CPS operation
with ODD functional adaption is actuated as nominal capabilities with new limits. Multiple
functional adaptions are possible. The limitations have to be defined such that the functional
adaption can be stated as safe. Therefore, it may be necessary to avoid a permanent operation.
A well-defined timeframe for an additional reaction is required.

Impacts on WP: 1, 2, 3, 4, 5
Priority: High Low

Domain: Automotive

3.2 Requirements on Human-empowered Intelligent subsystem

 Performance monitoring, evaluation and assessment

Hardware observability (ID_9): GP Core Performance Monitor Counters shall be available for
the general-purpose core and memory hierarchy high low HW avionics.
Impacts on WP: 2, 5

Priority: Low
Domain: Avionics

Hardware observability (ID_10): AI Accelerator Performance Monitor Counters should be
available for the AI accelerator internals medium low HW.
Impacts on WP: 2, 5

Priority: Low
Domain: Avionics

Figures on performance requirements for AI-based personalization process (ID_90): To
properly dimension the computing platform and to tune the orchestration process is of
paramount importance to have figures about the computing performances expected by AIaaS
based applications.
Impacts on WP: 1, 2, 5

Priority: Low
Domain: Automotive

Hardware requirement of the functional modules of the AIaaS (ID_101): Each functional
module of the AIaaS should have associated their specific hardware requirements (RAM,
computational load, need of local storage) to assure their compatibility with the underlying
hardware platform.
Impacts on WP: 2, 4

TEACHING D2.1 ICT-01-2019/№ 871385

TEACHING - 32 - January, 2020

Priority: High

Domain: Automotive and Avionics

AIaaS subsytem to manage internal module violations (104): The AIaaS platform requires a
subsystem to collect and react to the violations of the reliability metrics raised by the functional
modules of the platform.
Impacts on WP: 2, 3, 4

Priority: Medium
Domain: Automotive and Avionics

Non-impairment of dependability (105): HW and SW architecture choices (WP1-WP2) shall
not impair the reliability of the dependable subsystem; this meta requirement applies to the non-
dependable part of the CPS.

Impacts on WP: 1, 2, 3, 5
Priority: High

Domain: Automotive and Avionics

 Network communication

Data transfer for AIaaS federation (ID_72): The edge system must be able to send and receive
sets of ML model parameters to/from the cloud over the network.
Impacts on WP: 2, 4

Priority: High
Domain: Automotive and Avionics

Inter-edge AIaaS communication (ID_79): Different modules of the AIaaS system need to
exchange predictions (e.g., the output of model A to the input of model B on a different edge
device).

Impacts on WP: 2, 4
Priority: Medium

Domain: Automotive and Avionics

Network coverage and available protocols (ID_86): Edge subsystem needs to be informed (i.e.,
properly configured) about the network channels available in the target area (e.g., cellular,
satellite, Wi-Fi)
Impacts on WP: 2, 5

Priority: High
Domain: Automotive and Avionics

TEACHING D2.1 ICT-01-2019/№ 871385

TEACHING - 33 - January, 2020

Cellular 3G/4G connection (ID_90): Vehicle shall be able to connect to 3G/4G network, in
order to communicate with other road users and cloud.
Impacts on WP: 1, 2, 5

Priority: High
Domain: Automotive

 Software development and deployment

Compatibility of developed SW with the chosen HW (92): The software implementation of
AIaaS at the edge must run on the available hardware.

Impacts on WP: 2, 4
Priority: High

Domain: Automotive and Avionics

Definition of learning functionalities of the AIaaS (ID_94): There should be a list of
functionalities from the modules of the AIaaS platforms (e.g., RNN, Classifier, etc..) with a
requirement on their API
Impacts on WP: 2, 4

Priority: Critical
Domain: Automotive and Avionics

Definition of the possible pattern for the access of the Edge storage (ID_95): A pattern defines
the characteristics of the data flow between the source and destination, such as:
streaming/storing each value as it is available, sending batches of a assigned size,
reading/writing data via queues; the actual partners depend on AIaaS system implementation
as well as from the application model we will adopt for the AIaaS.

Impacts on WP: 2, 4
Priority: Medium

Domain: Automotive and Avionics

Common interface for functional modules of AIaaS (ID_96): Functional modules of the AIaaS
should expose a common interface that allows orchestration operations such as initialization,
creation, connection, etc.
Impacts on WP: 2, 4

Priority: High
Domain: Automotive and Avionics

AIaaS application definition (ID_97): An AIaaS application should be specified as a workflow
graph of functional modules, including: its parameters, external communication channels, etc.

TEACHING D2.1 ICT-01-2019/№ 871385

TEACHING - 34 - January, 2020

Impacts on WP: 2, 4

Priority: High
Domain: Automotive and Avionics

 Data and Metadata

Common data format for the data brokering (ID_99): The data brokering should have a defined
format. Functional components of the AIaaS must either use the same format or implement an
adapter.
Impacts on WP: 2, 4

Priority: High
Domain: Automotive and Avionics

Common meta-data format for the data brokering (ID_100): The data brokering should have a
defined format for the meta-data associated to each type of sensor data
Impacts on WP: 2, 4

Priority: High
Domain: Automotive and Avionics

Non-volatile storage for the AIaaS platform (ID_103): The AIaaS platform requires access to a
non-volatile storage unit, to store data and meta-data.
Impacts on WP: 1, 2, 4, 5

Priority: High
Domain: Automotive and Avionics

3.3 Requirements on the High-Performance Computing and
Communication Infrastructure as a whole

 Communication

Communication of the AIaaS modules with the vehicle (ID_75)
Impacts on WP: 2, 3, 4

Priority: High
Domain: Automotive

Communication of the vehicle with the AIaaS modules (ID_76): The AIaaS modules must be
able to receive as input the data from the sensors and the state of the vehicle
Impacts on WP: 2, 3, 4

TEACHING D2.1 ICT-01-2019/№ 871385

TEACHING - 35 - January, 2020

Priority: High

Domain: Automotive and Avionics

Intra-edge AIaaS communication (ID_78): Different modules of the AIaaS system need to
exchange predictions (e.g., the output of model A to the input of model B)

Impacts on WP: 2, 4
Priority: High

Domain: Automotive and Avionics

Access to vehicle sensors’ data (ID_85): Vehicle sensors data (both related to humans and the
vehicle itself) must be readable through a standard M2M protocol

Impacts on WP: 2, 4, 5
Priority: High

Domain: Automotive

 Reaction to state changes

Detect changes in car state or context (ID_81): Use sensors and cameras either integrated to
the car (accelerometers, gyroscopes, luminosity sensors, LIDAR, camera, IR beam and sonar)
or attached by the driver to detect car's state and context (e.g., road and weather conditions,
obstacles) to feed them in the human-centric personalized autonomous driving system.
Impacts on WP: 2, 4, 5

Priority: Medium
Domain: Automotive

Perform ADAS adaptation for model fine tuning (ID_82): Depending on the overall driving
style of the passenger, his state, the car's context or the currently selected driving style of the
passenger for the specific scenario, we change the model parameters in order to get a slightly
different distribution at the variation of the model's parameters.
Impacts on WP: 2, 4, 5

Priority: Medium
Domain: Automotive

 Software development, deployment and system description

Software packaging and deployment (ID_87): Software targeting both real-time management
and personalization as well as anomaly detection should be packaged in a way allowing their
deployment in the Cloud-Edge continuum.
Impacts on WP: 1, 2, 5

TEACHING D2.1 ICT-01-2019/№ 871385

TEACHING - 36 - January, 2020

Priority: High

Domain: Automotive and Avionics

Figures on data production rate and QoS requirements (ID_88): There is a need for information
about the actual amount of data generated by all the sensors in the controlled environment per
unit of time. This is a fundamental requirement to properly dimension and tune the
communication and computing platform of the CPSoS.

Impacts on WP: 2, 4, 5
Priority: High

Domain: Automotive and Avionics

 Data management

Data brokering within the AIaaS platform (ID_98): There should be a mechanism of data
brokering that mediates the access to the sensor (human, vehicle) data from the functional
modules of the AIaaS.

Impacts on WP: 2, 4
Priority: High

Domain: Automotive and Avionics

Annotated data for AIaaS (avionics traces) (ID_106): Need to collect software/hardware traces
from the aircraft sensors to train the AI modules.

Impacts on WP: 2, 4, 5
Priority: High

Domain: Avionics

 Security

Secure access from application to the adaptive system of the vehicle (ID_102): The autonomous
driving system should expose an interface that allows the application of the AIaaS to tune the
parameter of the adaptive system of the vehicle in a secure way.

Impacts on WP: 1, 2, 3, 4, 5
Priority: Critical

Domain: Automotive

TEACHING D2.1 ICT-01-2019/№ 871385

TEACHING - 37 - January, 2020

4 Design
TEACHING develops a human-aware CPSoS for autonomous safety-critical applications,
relying on a distributed, energy-efficient and dependable AI, leveraging innovative edge
computing platforms integrating both general purpose and specialized hardware.
A key objective of the TEACHING project is to design a computing platform supporting the
development and deployment of autonomous, adaptive and dependable CPSoS applications,
allowing them to exploit a sustainable human feedback to drive, optimize and personalize the
provisioning of their services. To this end, TEACHING aims to realize a human-aware
approach, i.e., evaluate the reactions of the human to steer the operation of the autonomous
CPSoS. In the spirit of the SoS approach, TEACHING aims at realizing a computing
infrastructure comprising a specialized human-centric system of sensing devices, integrated
within the CPSoS, and encompassing wearables sensors for tracking bio-signals as well as
touchless environmental sensors. These will serve as information sources feeding AI models
specialized in the recognition and characterization of the human physiological, emotional and
cognitive (PEC) state. A detailed description of the entire AI process is presented in deliverable
D4.1. The reactions monitored by such a system will serve to drive CPSoS operation in synergy
with the humans. The two TEACHING use cases, in autonomous driving and avionics domains,
actually provide demonstrators showing how the operations of an autonomous transportation
application can be reconfigured online based on the PEC reactions of the human within the
CPSoS.
TEACHING high-performance computing and communication infrastructure (HPC2I) will be
the enabler of such achievements. It will be designed accordingly to an edge-distributed and
federated approach, allowing to maintain important parts of the computation close to the end
user and the data sources, reducing connectivity-related issues that may affect reliability and
security, while enabling the exploitation of a virtually endless number of resources on Clouds,
if needed. HPC2I leverages embedded systems and specialized hardware to develop high-
performance edge resources allowing to run computational demanding tasks where data is
actually generated. To this end, it does integrate different specialized microcontrollers (e.g., for
fail-operational aspects), to general purpose dynamically reprogrammable accelerators for
heavy computations, such as FPGAs. Such computing backbone is, of course, integrated with
the necessary sensing devices to realize the human-monitoring CPS.
At software system level, TEACHING manages the high heterogeneity and specificity of the
hardware resources at the edge employing abstractions, communication and orchestration layer
leveraging approaches borrowed from cloud- and edge-computing, enabling the management
of resources and applications onto a computing continuum spanning the whole TEACHING
computing platform. This will support the developer in managing the burden following from
the complexity of the deployment of the different application components on the most adequate
resources for their functions (data processing, safety-critical routines, cybersecurity watchdogs,
etc.).
The methodology developed in TEACHING will also deliver proper programming abstractions
that fit the complexity of the infrastructure and the needs of AI/ML models, whose
implementation should be provided on a variety of different resources ranging from energy
efficient silicon-AI, to multicores and co- processors like GPUs and FPGAs.
At the run-time system level of the infrastructure, autonomous applications on CPSoS demand
a highly adaptable framework designed to continuously monitor the system execution metrics
based on the workload and non-functional parameters like reliability, safety and security
enforcement. In TEACHING, the high degree of reconfigurability of the platform, both at the

TEACHING D2.1 ICT-01-2019/№ 871385

TEACHING - 38 - January, 2020

communication level and in terms of re-programmable hardware resources (e.g., FPGAs) when
adopted, will be profitably exploited by applications running on top of it in a seamless way in
order to achieve trade-offs between performance, response time and cost of running
applications in terms of energy. In the remaining of this section is described the conceptual
architecture of the HPC2I (Section 4.1.1), a brief description of the flows of information
(Section 4.1.2) occurring between the different entities realizing the infrastructure
distinguishing between the two project use cases.

4.1 High-Performance Computing and Communication Infrastructure
(HPC2I)

The combined set of hardware, system software, development methodologies, orchestration
strategies and network protocols used in TEACHING will realize the HPC2I, whose conceptual
architecture is sketched in Figure 2 and briefly presented in Section 4.1.1.
Such infrastructure is aimed at supporting the execution of the TEACHING platform and its
use cases. As such, it does need to satisfy both the specific requirements associated with the
automotive and avionics use cases, basically ensuring the viability of the infrastructure as
execution platform. Nevertheless, HPC2I is in charge of making possible the actual exploitation
of the aforementioned human-based empowerment of the platform.

Figure 2 - Conceptual Architecture of HPC2I

Both the use cases of TEACHING have quite specific requirements in terms of hardware and
software. In fact, as many other solutions targeting the avionics and automotive domains, have
special needs in terms of dependability and safety that reflect in the hardware used for their
execution. In the context of TEACHING project, the hardware supporting the specific needs of
both the use cases will be provided by I&M66. Conversely, the TEACHING platform, intended

66 Additional information about the I&M board supporting the TEACHING use cases is provided in deliverables D1.1 and D6.1

Far

Edge

(Vehicle

or
Plane)

Near

Edge

(RSUs,

Telco,
Airports)

Cloud

Private Data

Federated

Data

Federated AI

Models

Local AI

Models

Near

Edge

(RSUs,

Telco,
Airports)

Far

Edge

(Vehicle

or
Plane)

Far

Edge

(Vehicle

or
Plane)

Far

Edge

(Vehicle

or

Plane)

Shearable

Data

Fused AI

Models

General

Purpose

Edge

Resources

On

Premise

Resources

Telco-level

Resources

(Network BSs,

RSUs)

Cloud Resources

Entities Interplay Data AI Models Resources

TEACHING D2.1 ICT-01-2019/№ 871385

TEACHING - 39 - January, 2020

as the set of tools for development, deployment, management and communication enablement
of adaptive applications based on human feedback, will be based on general purpose hardware
and software. Clearly, this leads to have a computing and communication infrastructure that is
highly differentiated depending on the specific requirements of the applications running on it.
The actual CPSoS nature of TEACHING platform is described in D1.1, where are detailed the
features distinguishing CPSoSs from different viewpoints, contextualizing the architecture of
the TEACHING platform under these perspectives. Such deliverable also provides additional
details on the hardware that the HPC2I will exploit, both detailing the specialized on-premise
resources, as well as the cloud/edge ones. In this deliverable, instead, we focus on the actual
interplay on the computational and communication resources, whose combined action realizes
the HPC2I. We clarify how HPC2I and its key technologies will result in an enabling
environment for the TEACHING platform and its use cases.

 Conceptual architecture

HPC2I conceptual architecture is depicted in Figure 2. The figure is organized in two horizontal
layers – depicted entities can be either part of the “local layer” (i.e., co-located with data
generators and data consumers) or the “remote layer” (i.e., located at a different place) – and
four vertical segments. Each segment describes the interaction between the two layers from a
different perspective.
The resources belonging to the local layer are the “Far Edge” of HPC2I, whereas the remote
layer of HPC2I is composed by “Clouds” and “Near Edge” resources.
As show by the second segment of Figure 2, the different layers manage different types of data.
The local layer is entitled to access all the data generated locally. These pieces of information
are the “private data”. A subset of such data, that is not considered as much sensitive as to be
kept exclusively in the Far Edge, can be shared, thus exported to the “remote layer”. It can be
also envisioned a pseudo-anonymization process to conduct on a subset of private data to feed
the sharable data. Altogether the sharable data of the different Far Edges, realizes the Federated
Data.
Private data and Federated Data are used to generate local and Federated AI models,
respectively. Every Far Edge merges the Federated AI models and the Local AI models to
generate Fused AI models representing a combination of the two.
It is worth to notice that Federated Data and, consequently, the Federated AI models are not
necessarily a single unique instance. We envision regional-level federations of data and AI
models. According with this perspective the resources at the “Near Edge” will behave as
collectors of federated data at regional level as well as generators of regional-level AI models.
As we mentioned above, the local layer is composed of both on-premises resources and general-
purpose edge resources, which are co-located. The former type of resources is aimed at
supporting the execution of mission-critical applications, the latter type run the human-
empowered AI subsystem. The remote layer is composed by resources that may be hosted in a
cloud or in a Near Edge device (e.g., RSUs or Telco resources).

 Information flows

Resources at the Far Edge can either communicate directly with a Cloud or reach it through
Near Edge resources, i.e., Far Edge connects to a Near Edge that eventually transmit the payload
to the remote cloud. We envision the possibility that different types of network may characterize

TEACHING D2.1 ICT-01-2019/№ 871385

TEACHING - 40 - January, 2020

the link connecting the Far Edge with Clouds, the one between Far Edge and Near Edge, as
well as the one between Near Edge and Clouds.

Automotive Use Case

In the automotive use case, represented in Figure 3, we envision vehicles (Vehicle1, V2, …,
Vn) as the Far Edge of the system which embeds both the on-premise resources supporting the
execution of ADAS, and general-purpose resources supporting the local fraction of the human-
empowered AI system. As such the local layer of the system support the execution of
applications that may come in the form of containers, unikernel67 and ad-hoc software.
In case Road Side Units (RSUs in the figure) are available, the architecture is enriched by a
Near Edge layer that can support more advanced features such as regional-level federation of
data as well as regional-level definition of AI models. The type of software that we can expect
to run on these devices is similar to the one run at the Far Edge.
It can be also envisioned an interaction occurring between different vehicles, mediated by
RSUs. This type of interaction is represented in the figure below by the arrow and indicated as
RSUs-mediated V2X link.
Clouds represent the centralized data center that hosts the federated data and generates the
Federated AI models. On Cloud the applications are deployed using VMs and containers.

Figure 3 - Automotive Use Case

67 http://unikernel.org/

Cloud

RSU RSU RSU

Vehicle1 V2 V3 VnV4

Far Edge – Cloud
Up/Down Link

Near Edge – Cloud
Up/Down Link

RSUs-mediatedV2X Link

Far Edge – Near Edge
Up/Down Link

Run:
- VMs
- Containers

Run:
- Containers
- Unikernels
- Ad-hoc software

Run:
- Containers
- Unikernels
- Ad-hoc software

TEACHING D2.1 ICT-01-2019/№ 871385

TEACHING - 41 - January, 2020

Avionics Use Case

In the Avionics use case (Figure 4), from the HPC2I perspective, the information flow does not
differ too much from the Automotive scenario. In this case, Far Edge is represented by airplanes
(Plane1, P2, …, Pn). The software run at this Far Edge basically matches the one of the
Automotive use case. Near Edge is represented by airports which the airplanes interface when
landed. In this case we envision that the airport may be equipped with resources that are more
complex than the ones embedded in an RSU. As a consequence, we expect that the software
deployed and run in the Near Edge matches the one hosted in the Cloud, e.g., VMs and
containers.

Figure 4 - Avionics Use Case <#> Presenter’s name

Cloud

AirPort

Plane1 P2 P3 PnP4

Far Edge – Cloud
Up/Down Link

Near Edge – Cloud
Up/Down Link

Far Edge – Near Edge
Up/Down Link

Run:
- VMs
- Containers

Run:
- Containers
- Unikernels
- Ad-hoc software

Run:
- Containers
- VMsAirPort AirPort

TEACHING D2.1 ICT-01-2019/№ 871385

TEACHING - 42 - January, 2020

5 PRELIMINARY EVALUATIONS ON TECHNOLOGIES,
PROTOCOLS AND TOOLS

This section reports some key technologies that are candidate to give a ground to the design and
development activities aimed at the creation of the HPC2I.
The aim of this section is to present such solutions, which have been identified during the first
year of the project, that are under consideration to serve as baseline technologies on which to
build the HPC2I.
In particular, Section 5.1 introduce interesting technologies to exploit to simulate the
TEACHING CPSoS overall. Section 5.2 presents tools enabling the AI-based processing at the
edge whereas Section 5.3 focuses on the programming techniques that can be exploited, mostly
at the edge to properly exploit GPUs and FPGAs. The solutions to measure the performances
in a CPSoS are instead the focus of Section 5.4.
Moving from computing aspects to communication related technologies, in Section 5.5 are
highlighted approaches enabling the efficient processing of streams, the communication
paradigms supporting the data transfer over the network (Section 5.6), and more specifically in
the area of vehicular networks (Section 5.7).

5.1 Representation and simulation of the TEACHING CPSoS

The definition of a computational environment on top of the TEACHING CPSoS is a complex
task. The interaction of many computational resources with heterogenous computational
capabilities and possibly variable geographical location needs to be considered. Therefore, there
is the need of a software simulation that abstracts the resource and the computational task in a
way to provide reproducible, controllable, and cost-effective experiments and fine-tuning
methodologies prior to the actual deployment in a real cloud-edge environment. The remainder
of this section describes several software that can possibly be used during the project to simulate
the computational environment of TEACHING.

The core aspect is the simulation of the “cloud-edge continuum" execution environment, in
which both cloud computing and edge resource participate to the execution of a common
application. To properly simulate this aspect, it is necessary to take into consideration the
computational capabilities of the cloud and edge resources and the characteristics of the
communication channel among them.

TEACHING D2.1 ICT-01-2019/№ 871385

TEACHING - 43 - January, 2020

Figure 5 The modular architecture of CloudSim Plus

The CloudSim Plus68 (CSP) simulator is an open-source simulator written in Java that has been
gained a lot of momentum in the last years. At its core, CSP is based on CloudSim, a well-
known and widely used simulator. CloudSim69 is a pure cloud simulator: it focuses on providing
a realistic model for the implementation of allocation policies for virtualized resources in cloud-
based environment. However, CSP inherent modularity allows to personalize many
functionalities to simulate the ecosystem of TEACHING (see Figure 5). Many of the
functionalities that are of interest for the TEACHING project such as data center network
topologies and message-passing applications, federated clouds, cloudlets definitions,
distribution policies, and network definitions come already in the current distributed package.
The implementation and personalization of a given functionality it is rather easy as it is just
necessary to implement the corresponding java interface. However, the addition of brand-new
functionality can be more complex as it requires the definition of a new interface and to program
the interaction of the new module with all the other one in the simulator. For example, in the
CSP simulator there is no an explicit definition of an edge resources. While this can be
implemented as a cloud resource with specific constraints in terms of hardware characteristics
and geographical position, it cannot be ruled out that issues can arise when implementing a
complex edge computation use case.
PureEdgeSim70 (PES) is an open-source simulator based on CSP and adds extension for Edge
and Mist computing. PES natively supports task orchestration, the definition of offloading
policies and modelling of data sources such as IoT devices. These features pair nicely with the

68 M. C. Silva Filho, R. L. Oliveira, C. C. Monteiro, P. R. M. Inácio and M. M. Freire, "CloudSim Plus: A cloud computing
simulation framework pursuing software engineering principles for improved modularity, extensibility and correctness," 2017
IFIP/IEEE Symposium on Integrated Network and Service Management (IM), Lisbon, 2017, pp. 400-406, doi:
10.23919/INM.2017.7987304.
69 Rodrigo N. Calheiros, Rajiv Ranjan, Anton Beloglazov, Cesar A. F. De Rose, and Rajkumar Buyya, CloudSim: A Toolkit
for Modeling and Simulation of Cloud Computing Environments and Evaluation of Resource Provisioning Algorithms,
Software: Practice and Experience (SPE), Volume 41, Number 1, Pages: 23-50, ISSN: 0038-0644, Wiley Press, New York,
USA, January, 2011.
70 C. Mechalikh, H. Taktak and F. Moussa, "PureEdgeSim: A Simulation Toolkit for Performance Evaluation of Cloud, Fog,
and Pure Edge Computing Environments," 2019 International Conference on High Performance Computing & Simulation
(HPCS), Dublin, Ireland, 2019, pp. 700-707, doi: 10.1109/HPCS48598.2019.9188059.

TEACHING D2.1 ICT-01-2019/№ 871385

TEACHING - 44 - January, 2020

TEACHING ecosystem, in which on-board sensor data is used to instruments the decision
making that happens at the application level. Further, PES supports the definition of custom
mobility models for the edge/mobile nodes, allowing to factor in the mobility of vehicles (e.g.,
car or airplanes) in the orchestration of the tasks at the application level (see Figure 6).

Figure 6 Architectural overview of PureEdgeSim

Several other simulations software that specifically address the cloud-edge continuum are
currently being under development, however not widely used. EdgeCloudSim71 is an open-
source simulator similar to PES but showcase a limited number of features. The RECAP
Simulator72 has been developed in the context of the H2020 EU project RECAP, and it supports
in the evaluation of the trade-off for different deployment solution in terms of cost, energy,
resource allocation and utilization.

5.2 AI toolkit for edge devices

Together with the increase of popularity of AI, there have been an increase of popularity also
in Neural Network frameworks. These allow a developer to design and train a NN model
without having to deal with the low-level algorithms, but only feeding training data and
choosing the architecture. Among these, the most known are TensorFlow , Caffè , and PyTorch
. At the present day, it seems that there is no alternative better than the other in terms of
performances. The choice can be done based on the compatibility of these frameworks with
the target edge device. Furthermore, this will be the device with reduced resources, where
optimizations will be more needed. An open standard is also trying to bridge together the several

71 C. Sonmez, A. Ozgovde and C. Ersoy, "EdgeCloudSim: An environment for performance evaluation of Edge Computing
systems," 2017 Second International Conference on Fog and Mobile Edge Computing (FMEC), Valencia, 2017, pp. 39-44,
doi: 10.1109/FMEC.2017.7946405.
72 J. Byrne et al., "RECAP simulator: Simulation of cloud/edge/fog computing scenarios," 2017 Winter Simulation Conference
(WSC), Las Vegas, NV, 2017, pp. 4568-4569, doi: 10.1109/WSC.2017.8248208.

TEACHING D2.1 ICT-01-2019/№ 871385

TEACHING - 45 - January, 2020

libraries, called ONNX (Open Neural Network Exchange). It aims to be an exchange format
for trained models so that the final result of the development will be independent from the
framework used for the training phase.

In deliverable D5.1, two architectures are considered as edge devices: a Xilinx Ultrascale
Zynq+ and an i.MX8 Quad Max from NXP. The first one is a System on Chip that combines
ARM cores and FPGA programmable hardware. Xilinx, the company that designed it, gives
access to Vitis AI, a software toolkit for accelerated AI inference, exploiting a processing unit
deployed on the programmable hardware. Starting from the models described in Tensorflow
and Caffe, one can optimize (using quantization and pruning) and compile them for the target.
All this can be done without knowledge of hardware description languages. It claims high
performance with a low energy footprint while allowing developers with neural network
expertise to exploit hardware acceleration without much effort. For instance, Xilinx claims to
reach 33fps while executing Resnet50 on a ZU3EG.

On the other hand, the i.MX8 Quad Max can rely on six Cortex-A cores and two GPUs for AI
inference. NXP distributes eIQ, which is a set of software needed to deploy Neural Network on
the device. It supports TensorFlow models, that are optimized by TensorFlowLite: It is another
set of tools specific for pruning and quantization, making a TensorFlow model lighter and able
to run on resource constrained devices.

The ARM NN inference engine uses the Neon accelerator inside the Arm Cores. NXP modified
it to make it compatible also with the GPU present on the i.MX8.

As described in deliverable D1.1 TensorFlow/Lite is the framework that is currently the
candidate to be used in TEACHING. This is also coherent with the considerations made in
D4.1.

5.3 Preliminary evaluation of GPU/FPGA programming technologies

During the preliminary activities of TEACHING work package 2 have been evaluated the
flexibility offered by modern high-level programming tools for GPUs and FPGAs, in order to
select the right programming technologies for developing the streaming libraries needed for the
project purposes. In this investigation phase, we have focused on two programming models in
detail: CUDA for developing streaming libraries on NVIDIA GPUs, with special focus on
integrated GPUs for IoT-oriented boards, and OpenCL for FPGAs. In the rest of this section,
we will describe these two programming models and the specific features that we claim are of
special interests for HPC2I.

Streaming on integrated GPUs with CUDA
Our goal is to develop a streaming library able to leverage co-processors like GPUs. More
specifically, owing to the requirements of the CPSoS of the TEACHING environment, we are
assuming the presence of embedded devices equipped with small power-oriented ARM
multicores and integrated GPUs sharing the memory with the CPU (like in the Jetson Nano
Developer Kit shipped by Nvidia). The de-facto programming model for Nvidia GPUs is
CUDA. CUDA is a programming model used to exploit GPUs for efficient execution of data-
parallel kernels. CUDA kernels are special functions in C/C++ code (annotated with the
__global__ directive), which are executed asynchronously on the device. The execution model
is the SIMT one (Single Instruction Multiple Threads), where each kernel consists of several

TEACHING D2.1 ICT-01-2019/№ 871385

TEACHING - 46 - January, 2020

CUDA threads grouped into blocks. Threads are scheduled on the underlying CUDA cores
(stream processors) in groups of 32 threads called warps, each one executing the same
instruction in a SIMD lockstep manner. Warps are efficiently scheduled by the
hardware/firmware resources available on the GPU device.
Developing a streaming library able to leverage integrated GPUs is of special importance for
the goals of WP2. Embedded devices are often equipped with co-processors that represent
powerful facilities able to accelerate specific computing tasks with limited additional power-
consumption requirements. However, streaming tasks like filtering, sampling, aggregation and,
more generally, stateless and stateful streaming transformations pose several challenges that
often fight with the traditional way of programming GPU devices. We have identified four main
challenges to obtain satisfactory performance:

• Challenge 1: “enable efficient micro-batching techniques to exploit GPU
processing capabilities”. The basic way to use GPUs is to extract data parallelism. In
the streaming domain, each input is generally small (e.g., of few bytes, like a sensor
reading in the TEACHING environment). So, we aim at extracting data parallelism by
buffering inputs in small batches, whose processing is offloaded on the device for fast
processing.

• Challenge 2: “avoid global synchronization in the use of the GPU device by many
concurrent/parallel activities on the CPU”. GPU operations like kernel executions
and memory copies (host-to-device and device-to-host) are generally executed in
issuing order. However, in case of multiple threads on the host triggering such kind of
operations, the CUDA configuration needs special care to allow parallel execution of
such operations, triggered by different CPU threads on the same device.

• Challenge 3: “frequent memory allocations on the GPU-accessible memory are
detrimental for performance”. To allocate GPU-accessible memory, CUDA provides
some cudaMalloc routines whose behavior is similar to traditional malloc in C/C++.
However, the use of cudaMalloc requires a global synchronization on the device: i.e.
all the previously running GPU operations (kernels and copies) must be complete before
the memory allocation request can be processed. If executed frequently, like expected
in streaming scenarios where data continuously arrive for processing, this could
generate a significant performance drop and under-utilization of the device’s resources.

• Challenge 4: “stateful streaming operators are difficult to be executed on GPU”.
GPU-based streaming operators offload the processing of batches on the device. For
stateless operators, each input in the batch can be processed in parallel by a CUDA
thread. So, this does not generate particular problems since the data-parallel
programming style is easily enforced in such a scenario. Much more challenging is
instead the micro-batch processing for stateful operators. Indeed, they often require that
all the inputs of the same sub-stream (usually identified by a specific value of a key
attribute in the input items) are executed sequentially by reading and updating an
internal state maintained for each sub-stream. So, a CUDA kernel should enforce this
constraint, i.e. all the inputs in the batch with the same key attribute must be processed
sequentially by the GPU.

After our preliminary investigation, we have found specific techniques and CUDA features that
represent viable solutions to face the previously described challenges:

• Micro-batching techniques should allow the fine-grained tuning of the batch size which
should be adapted automatically by the run-time system in order to find the best balance
between processing latency (higher with longer batches) and throughput (usually higher
with larger batches). Furthermore, batches must be prepared as much as possible

TEACHING D2.1 ICT-01-2019/№ 871385

TEACHING - 47 - January, 2020

asynchronously, by overlapping the preparation of the next batch with the transmission
and processing of the previous one. This idea can be exploited thanks to the
asynchronous nature of kernels in CUDA, and the possibility to use asynchronous copies
that do not block the calling host thread.

• To avoid global synchronizations, we will leverage the mechanism provided by CUDA
streams. Each CUDA stream is a sort of ordered queue of GPU operations (kernels and
copies), which guarantees that all the operations issued on the same CUDA stream will
be completed in the issuing order. However, no synchronization exists between GPU
operations issued on different CUDA streams, which are executed concurrently/in
parallel on the device. So, different operators of the streaming application running on
the CPU will be composed by several host threads (C++ or Posix ones). The threads
enabled to offload kernel processing on the GPU will be equipped with independent
CUDA streams for maximizing parallelism without requiring global synchronizations
on the device.

• To avoid the impact of frequent cudaMalloc, a custom memory allocation mechanism
is needed to allow recycling already allocated GPU memory areas. Implementing a
custom memory allocator is notoriously a complex problem. However, the unique
characteristics of streaming applications, based entirely on the producer-consumer
paradigm for exchanging data items across the data-flow graph, can be exploited to
design a simple yet efficient recycling mechanism of GPU-accessible memory areas.
This can be done by using lock-free queues that can be used by host threads to recycle
areas allocated for batches whose processing has been already completed.

• Stateful kernel processing requires special care. To enforce the stateful requirements
that all the inputs with the same key attribute are processed sequentially, the kernel
design needs a preliminary preparation phase to compute support arrays that allow
CUDA threads to access exactly one time each input in the batch, and to enforce the
stateful property. Such arrays should contain the indexes of the inputs in the batch with
the same key attribute, and they are followed to execute inputs with the same key
sequentially by the same CUDA thread. Furthermore, since the code executed by each
CUDA thread might be generic, and probably divergent among threads on the same
warp, the kernels should be written in order to enforce intra-warp parallelism whenever
it is possible and convenient. Intra-warp parallelism is a way to develop persistent-
thread kernels in CUDA, where only one thread per warp is really working while the
others are idle. This can be used, at least when the inherent parallelism within a stateful
batch is limited, to increase GPU occupancy and to avoid the divergent branch problem,
by using whole warp as unit of parallelism (they can be considered as conventional
MIMD threads).

The picture below (Figure 7) summarizes the overall ideas of our methodology for streaming
on GPUs, which will represent design choices that we will follow during the next steps of our
activities for developing a streaming library with full support for integrated GPU devices on
embedded resources.

TEACHING D2.1 ICT-01-2019/№ 871385

TEACHING - 48 - January, 2020

Figure 7 – Streaming on heterogeneous systems with multi-core CPUs and integrated GPUs

Other aspects of the design depend on the specific features of the underlying GPU device. In
particular, for integrated GPU devices we have the opportunity to exploit a physically shared
memory between CPU and GPU. If properly used, this facility would allow useless copies
between host and device memories. However, there are special considerations that must be
considered during the development. On Tegra architectures, like the Jetson Nano Developer Kit
and other models of integrated Nvidia GPUs, there are two main ways to implement a memory
area accessible by both the host and the GPU. The first is to use the unified CUDA memory
(through cudaMallocManaged calls). The second is by exploiting pinned-memory allocated
with cudaMallocHost.
Unified memory represents a very powerful mechanism provided by CUDA, which greatly
simplifies programming without requiring explicit memory transfers. However, unified
memory can be inefficient on older GPU models, because such GPU devices are not equipped
with hardware page-fault engines and the whole managed memory must always be transferred
on the device before processing and cannot be accessed by the host during the kernel
computation. On Tegra architectures, such transfers are avoided (because of the physical
memory). However, unified memory still poses some problems when used with CUDA streams.
Indeed, each managed memory area must be attached to a specific CUDA stream, and cannot
be accessed by the host threads when some kernels issued on that stream are running on the
device. This requires a special treatment and evaluation of such attaching routines provided by
CUDA.
Pinned-memory instead is much easier to use on Tegra devices. It can be safely accessed by
host threads and by the device without any attachment routines to be called per CUDA stream.
However, on the host the areas of pinned-memory are not cached on some Tegra devices (like
the Jetson Nano), and this might generate a higher processing time for working on such memory
areas by the CPU. A proper balance, and the use of the right allocation mechanism will be
carefully studied in the next steps.

Src1

Src2

Sink

Op1

Op2

Op3

CPU CPUGPU

batch
preparation

batch
preparation

recycling GPU-accessible areas

recycling GPU-accessible areas

stateless
kernel

stateless
kernel

stateful
kernel

GP
U

TEACHING D2.1 ICT-01-2019/№ 871385

TEACHING - 49 - January, 2020

Streaming on FPGAs with OpenCL
In the first phase of the project activities we have studied the potential of programming using
OpenCL on the Han Pilot Platform SoC board. We will briefly describe the board and we will
show the specific challenges that we have preliminarily investigated.
The Han Pilot Platform is a SoC (System on Chip) board featuring and ARM multi-core CPU
(dual-core ARM Cortex-A9 MPCore) and an Intel Arria10 FPGA (660K of low-power FPGA
logic elements). The SoC board has been configured to use the OpenCL BSP (Board Support
Package) provided by Terasic, and the full Intel Quartus Prime toolchain has been installed,
with proper free academic licenses, on two server machines available at UNIPI.
The main goal of our activities is to provide powerful abstractions to use co-processors for
streaming workloads. We selected OpenCL as the target framework for developing FPGA
applications, because it provides a good balance between programmability (due to its higher-
level API compared with traditional FPGA-based programming solutions like Verilog and HSL
in general). Indeed, an OpenCL kernel is compiled by an offline compiler (called aoc), which
generates the bitstream representation that configure the FPGA device for doing such kind of
specific computational task. In this translation process, several sophisticated optimizations and
heuristics are executed by the compiler to optimize the space and the resources available on the
FPGA.
OpenCL allow programmers to write kernels that can be executed on different kinds of devices.
The idea of a streaming library using FPGAs is to allow programmers to develop streaming
DAGs (Directed Acyclic Graphs) of operators performing stateless and stateful streaming
transformations like filtering, aggregation and joins. The general idea is to allow the
programmer to execute a portion (usually a time-consuming one with strict latency constraints)
on the FPGA devices, leaving other activities on the ARM multicore for receiving inputs from
external sources, and for collecting outputs before transmitting them outside (see Figure 8 for
a graphical representation of this idea). Each operator mapped on the FPGA can be
implemented as:

• Single work-item OpenCL kernels: such kind of kernels are often called (tasks) in the
OpenCL jargon. A kernel of this kind wraps a traditional sequential code in C (with
specific constraints). The offline compiler will automatically pipeline and unroll the
loops in the kernel code to extract parallelism between independent iterations. Such kind
of automatic parallelism is called pipeline parallelism. Kernels of this kind are
particularly suitable for streaming tasks, since they do not require having a large amount
of data available in advance, but the processing can be done on a per-input basis (true
streaming).

• NDRange OpenCL kernels: such kind of kernels represents the most common way of
programming using OpenCL. Their goal is to break up the problem in finer components
each one executed by an individual thread. Threads are called work-items, and they are
grouped into work-groups. Parallelism is expressed by the work-items, which work in
parallel on different pieces of the original input and can synchronize with other work-
items in the same work-group. This parallelism model is called data parallelism. The
offline compiler translates the code NDRagne kernels on the FPGA in a different way,
without unrolling loops. So, it is of special importance to break the original problem in
a large set of elements to be run by different work-items, and to balance their workload
as much as possible.

TEACHING D2.1 ICT-01-2019/№ 871385

TEACHING - 50 - January, 2020

Figure 8 - Streaming on a SoC composed of an ARM processor and an Intel FPGA

The two different kinds of kernel leave space for different ways of implementing a streaming
pipeline on the FPGA. The use of NDRange kernels for implementing operators enables an
approach symmetric with what we plan to do with integrated GPUs and CUDA, where data
parallelism is the only viable model for accelerating streaming tasks. Instead, the use of work-
item kernels allows a finer parallelization, based on pipeline parallelism both inside the kernels
(owing to the offline compiler translation of the kernel source code), and between kernels,
which will remain active and processing different inputs in a pipeline fashion.
Another point to mention, it the OpenCL memory model and how it maps to the underlying
FPGA hardware owing to the decisions taken by the offline compiler. OpenCL provides a high-
level memory model whose implementation in terms of hardware resources can be different on
the specific devices:

• Host Memory: it is a memory accessible only by the host CPU. Data are usually in this
memory before being transferred to a FPGA-accessible memory.

• Global Memory: it is a memory accessible by both the host CPU and the FPGA device.
This memory is allocated/deallocated by host threads. Memory areas allocated in the
global memory should be accessed linearly by the FPGA to obtain good access latency.

• Constant Global Memory: it is a region of the global memory accessible in read/write
mode by the Host CPU and in read-only mode by the FPGA compute units. Differently
from the global memory, kernels on the GPU can load data in this kind of memory in a
sort of internal cache accessible by the FPGA compute units.

• Local Memory: it is a memory accessible by all the work-items in the same work-
group.

• Private Memory: it is a memory private of an individual work-item within a kernel.
On the Intel Arria10 FPGA, these logical memory entities are implemented as follows. The host
memory is implemented on one or more memory banks (implemented by dedicated chips)
accessible only by the host CPU. The global memory is implemented using DDR/QDR chips
available on the board, while the local memory is implemented using blockRAM units
presented on the FPGA. Finally, private memory is directly implemented using the registers
available on the FPGA.
The other important aspect of the design is the way in which we plan to implement the data
exchanging mechanism between operators mapped onto the FPGA. One important feature
provided by OpenCL for Intel FPGA is represented by Intel Channels, which are a superset of
the traditional OpenCL pipes provided by Intel FPGA vendor extension. There are three kinds
of channels:

Host (ARM Processor)

FPGA

SRC SINK

OP1 OP2 OP3 OP4

host
pipes

host
pipes

k2k channel k2k channel k2k channel

OpenCL kernels
(NDRange or Task)

TEACHING D2.1 ICT-01-2019/№ 871385

TEACHING - 51 - January, 2020

• I/O channels: they are used to allow data accesses from and interface of the FPGA (e.g.,
directly from a 10 Gb/s Ethernet port to the FPGA without passing from the host CPU).

• Host pipes: they allow the host CPU to send data accessible to the FPGA without
passing from the global memory. They are implemented as a pinned-memory in the host
and a FIFO buffer implemented on the blockRAM units on the FPGA. The
implementation will stream blocks of data written by the host on the pinned-memory
directly to the buffer on the FPGA device, allowing a fast and streamed way to
efficiently provide inputs to the board. The same approach is used for pipelining data
from the FPGA to the host.

• Kernel-to-Kernel channels: they are channel used by kernels on the FPGA to
efficiently exchange data values. They are implemented as FIFO buffers by the offline
compiler.

These facilities allow the investigation of at least two different modes for implementing
operator pipelining on FPGA:

• By-value passing: where kernel-to-kernel channels are used to pass input values from
one kernel to the next one. This is a very efficient way of implementing data forwarding
between operators, done in few clock cycles on the FPGA. However, this approach has
limitations related to the size of the exchanged messages that should be studied.

• By-reference passing: we plan to study an approach where channels are used to pass
pointers to data (usually batches in that case) in global memory, which will be accessed
by the next operator kernel. This approach puts a heavier load on the global memory but
theoretically does not suffer from the limitations related to the size of the exchanged
data items, since they are in global memory and kernel can use the channels to pass a
capability for accessing them.

5.4 Performance measurement tools in a CPSoS context

For a long time, performance monitoring and profiling tools helped the HPC programmers with
debugging their systems, optimizing their applications, or identifying bottlenecks. A wide
variety of generic tools exists for non-time-critical systems73, such as gprof, valgrind, or atom.
These tools rely on either OS features such as multi-threading, interrupts or timers, or either on
pseudo-automatic code instrumentation to collect the required timing information.
However, in real-time systems, such features are either not available (with enforced static
scheduling), restricted or prohibited due to their impacts on time determinism. This is especially
true for safety critical software that is constrained by drastic limitations due to the safety
standards74 75 76.

73 Survey of Software Monitoring and Profiling Tools. B Wun. 2006
74 Functional safety and IEC 61508 – A basic guide. International Electrotechnical Commission (IEC), Geneva, Switzerland,
Nov 2002
75 ISO 26262: Road Vehicles – Functional Safety. International Organization for Standardization (ISO), 2011
76 DO-297: Software, Electronic, Integrated Modular Avionics (IMA): Development Guidance and Certification. Radio
Technical Commission for Aeronautics (RTCA) and EURopean Organisation for Civil Aviation Equipment (EUROCAE).
1992

TEACHING D2.1 ICT-01-2019/№ 871385

TEACHING - 52 - January, 2020

 Profiling safety-critical systems

Section 5.2.1 of Deliverable D1.1 has already presented the Performance Monitor Counters
(PMC) as a way to collect both timing information as well as details on the hardware resource
usage, making them suitable to be exploited in Health & Usage Monitoring Systems (HUMS).
Their challenges can be summarized a. providing a way to 1) perform an accurate real-time
runtime and resource usage measurement, 2) with a negligible impact on timing behaviour, 3)
running outside of the operating system (avoiding system calls) to be able to profile both the
OS and the running applications.
A potential solution is METrICS77: a Measurement Environment for Multi-Core Time Critical
Systems that is running on top of the PikeOS78 RTOS from SYSGO. This framework proposes
accurate runtime and resource usage measurement while having a negligible impact on timing
behaviour.

 METrICS architecture

METrICS consists of several core components appearing in green in Figure 9. On the left side,
we present the components actually running on the target hardware board, and on the right side
the METrICS server, running on a Linux host, and in charge of driving the experimental
campaign to be run on the board and collect all the gathered profiling information.

Figure 9: Architecture of the METrICS measurement tool

• The METrICS library is meant to be linked with the target applications to provide
them with an access to the measurement probes API, allowing the collection of time and
resource access information.

• The syscall instrumentation layer provides a way to automatically instrument each
APEX system calls for ARINC-65379 avionic applications.

77 METrICS: A Measurement Environment for Multi-Core Time Critical Systems. S. Girbal, J. Le Rhun, H. Saoud. Embedded
Real Time Software and Systems (ERTS 2018). Jan 2018. Best Paper Award
78 PikeOS 4.2: RTOS with Hypervisor-Functionality, White paper from SYSGO AG, March 2017
79 ARINC specification 653-2, “Avionics Application Software Standard Interface”. ARINC. December 2005

TEACHING D2.1 ICT-01-2019/№ 871385

TEACHING - 53 - January, 2020

• The Hardware Monitor kernel driver provides the supervisor-level privilege
necessary to access to hardware performance monitor counters (PMC). Such counters80
allow us to count some hardware events, including the accesses to some shared hardware
resource.

• The collector partition is in charge of 1) defining a shared memory space to collect
measurements; 2) configuring specific measurement scenarios; 3) transferring the
collected profiling information to the Linux host.

• Finally, the METrICS server running on the Linux host. It drives the experimental
campaign and gather the collected profiling information.

 METrICS intrusiveness

A major challenge in profiling tools is its intrusiveness in the system it monitors. METrICS
distinguish execution time intrusiveness and code intrusiveness. The former limits the
accuracy of the measurement due to the monitoring overhead, whereas the latter requires an
effort from the developer to instrument the code of the application, which could be an issue for
legacy software. METrICS focuses into limiting execution time intrusiveness, to have a
minimal impact on the timing interference phenomenon.
A time intrusiveness had been performed of a full METrICS probe consisting of: 1) retrieving
the timing information thanks to the core-dedicated special registers; 2) retrieving the
performance monitor counters, again through direct register access; 3) retrieving thread-specific
information from the OS; and 4) storing the collected information into the shared memory. The
results are presented in Figure 10.

Figure 10: Completion time of a METrICS probe over 180000 runs

Over 180K runs, the probe time varies from 85ns up to 392ns. For 97% of the runs the overhead
is below 110ns, and the overhead is above 191ns for only 0.002% of the cases. In comparison,
the corresponding RTOS system call to only obtain current time (p4_get_time for PikeOS)
requires 240ns, and it only get the current time and no PMC information. This is due to the fact
that a system call involves at least two context switches, and possibly some privilege level
changes. Therefore, the low intrusiveness of the overall METrICS probe makes it viable even
for characterizing few micro-second long system calls of the OS.

80 The basics of performance-monitoring hardware. B. Sprunt. Micro, IEEE, 22(4):64–71, 2002

TEACHING D2.1 ICT-01-2019/№ 871385

TEACHING - 54 - January, 2020

 Profiling Design Space

Target ARM or PowerPC embedded hardware usually provide a selection of about 250
hardware events that could be measured with performance monitor registers. Among these
events around 50 of them are actually related to shared hardware resource to be profiled.
However, this architecture only provides a limited number of performance monitor registers
(from 4 to 6), only allowing to concurrently profile a few hardware resources. As a
consequence, a large number of runs are necessary to systematically study correlations between
performance monitor counters and observed runtime (around 𝐶!"# runs).

To perform such a large number of experiments some form of automation is necessary, and
driven by the METrICS server on the Linux host. The different steps of the automated profiling
process are appearing in Figure 9, with 1) the selection of target executable and test
configuration, 2) the configuration of hardware counters to use, 3) the collection of
measurements and, 4) the storage of result trace files.
Such experimental campaigns generate a rather large amount of raw data, making the direct
statistical analysis quite difficult.

 METrICS in the TEACHING project

Whereas METrICS has only be used so far for hardware and software characterization using
statistical analysis techniques, the TEACHING project is an opportunity to couple METrICS
and AI systems to learn the nominal behaviour of applications with regards to the hardware
usage, allowing us to detect safety or security issues as deviation towards this nominal
behaviour.
Some effort will be dedicated to port METrICS to the specific project hardware board and
operating system. The hardware monitor driver being ported to a classical Linux driver to fulfil
the correct privilege requirements to configure the PMCs, and the collector partition being tuned
into a Linux process that will collect the traces and, during the learning phase, feed them to a
potentially external AI systems to perform the learning of a “nominal behaviour”. During the
operational phase, the real time trace will feed the embedded AI system that should perform the
corresponding inference to detect safety / security anomalies.

5.5 Efficient processing and management of data streams

Several Stream Processing Systems (SPS) exist and have popularity in the research community.
Some of them belong to the Apache umbrella and are well-established framework for stream
processing on heterogeneous machines. In particular, they target physical clusters as well as
traditional cloud environments with specific run-time mechanisms for scheduling and fault-
tolerance designed traditional infrastructured distributed-memory architectures (e.g., clusters).
During the first part of the project activities, we have practiced with two of them: Apache Storm
and Apache Flink. In order to give a first general evaluation of these two tools, we will describe
their programming model and runtime in the next subsections, furthermore, we provide a first
preliminary evaluation of their performance with some final considerations about the need of
SPSs oriented for being executed on edge/embedded resources like the one in the TEACHING
environment.

TEACHING D2.1 ICT-01-2019/№ 871385

TEACHING - 55 - January, 2020

 Apache Storm

Apache Storm is a distributed stream processing computation framework designed to process
unbounded streams of tuples (structured records of attributes). It has been acquired, developed
then eventually open sourced by Twitter81. From the programming model perspective, it adopts
a compositional API where the developer builds a graph of interconnected streaming
transformations called topology. Supported transformations are of two types: spouts are the data
sources, they take no inputs and generate one or more outputs; bolts process the incoming tuples
and pass them to the next set of downstream bolts or simply end the computation, thus behaving
as sinks. Data flows from producer spouts/bolts to consumer bolts using one of the several types
of partitioning strategies at disposal, such as: random partitioning of tuples (shuffle grouping),
partitioning based on a subset of the tuple fields (fields grouping), broadcasting to all the
consumer instances (all grouping), and others. The logic to interconnect spouts and bolts and
to choose the right partitioning policies is left to the programmer. Developers are in charge of
implementing the business logic of the components usually by specializing several base classes
(the API is available in Java/Scala) provided by the framework, then they use the
TopologyBuilder class to build the actual topology.
Storm usually runs on a distributed cluster and clients submit topologies to a master node, which
is called the Nimbus. Nimbus is responsible for distributing and coordinating the execution of
the topology over the cluster machines. The actual work is done by so-called worker nodes.
Each worker node runs one or more worker processes (each is a separated JVM). Each worker
process executes spouts/bolts of a single topology by using separated threads called Executors.
Each executor can run one or more replicas (tasks) of the same spout/bolt in the topology. Storm
adopts this additional logical parallel concept of tasks (in addition to executor threads) to give
more flexibility to application developers. Indeed, the number of executor threads can be
changed at runtime while the number of tasks is fixed, to give the opportunity to scale the
topology without having to shut the system down.
From the infrastructural viewpoint, each worker node run a supervisor daemon interacting with
Nimbus (it is a master-worker architecture). The cluster state is maintained by Zookeeper (an
open-source distributed key-value store), and Nimbus is responsible for scheduling the
topologies on the worker nodes and monitoring the progress of the tuples flowing through the
topology.
As for all the distributed SPS, Storm provides some sort of delivery guarantees. To exploit
them, some mechanisms must be explicitly used by the programmer during the development of
topologies: anchoring and acking. The former happens when a new tuple is emitted by a spout,
Storm generates a unique message identifier for it and starts keeping track of the not-yet-acked
tuple, then when a downstream bolt has finished processing the incoming tuple, it acks the
message using one particular API call to signal that, in case of failure, the work up to that
message has been safely processed. Otherwise, after a certain timeout the tuple is emitted again
by the spout (thus providing a so-called at-least-one semantics).

 Apache Flink

Apache Flink is a SPS developed by the Apache Software Foundation providing both streaming
and batch processing with a unified API. Flink provides binding for several languages in

81 A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M. Patel, S. Kulkarni, J. Jackson, K. Gade, M. Fu, J. Donham, et al.,
“Storm @twitter,” in Proceedings of the 2014 ACM SIGMOD international con- ference on Management of data, pp. 147–
156, 2014

TEACHING D2.1 ICT-01-2019/№ 871385

TEACHING - 56 - January, 2020

addition to Java, such as Python and SQL. In the description, we will focus on the streaming
capabilities of the framework, since they are of interest for the project activities.
The programming model offered by Flink is based on data transformations exposed through a
fluent interface which, opposed to Storm, is strongly typed and has a declarative style.
Eventually, the declarative program is mapped to a dataflow graph and deployed to a Flink
cluster or to a single node instance. Developers extend the classes provided by the framework
to implement their solution, e.g., by implementing the business logic code of data
transformations connected in pipeline. In the Flink jargon, a task represents a single logical
operator which can be replicated in one or more subtasks which in turn are mapped directly
onto threads executed by one or more JVMs (called TaskManagers) provided that there are
enough slots available (slots are abstract entities that are used for sharing the resources of a
JVM, like the heap memory). Indeed, the number of slots determines the maximum achievable
parallelism, which in case of computationally intensive tasks should not exceed the number of
CPU cores/threads. Furthermore, Flink can be configured to execute more subtasks (operator
replicas) on the same thread by using the so-called operator chaining optimization.
Flink has a completely distributed architecture mainly targeting clusters of heterogeneous
nodes. Its runtime consists of two types of processes82. JobManagers coordinate the distributed
execution. They schedule tasks onto the resources and coordinate the fault-tolerance protocols
provided by the SPS. JabManager act as master of a master-slave architecture, and can be
replicated in multiple entities for reliability reasons. The second kind of processes are
TaskManager. They are in charge of executing tasks (or more specifically, the subtasks) of a
dataflow graph, and buffering and exchanging the data streams. TaskManager processes are
distributed among the machines of the Flink cluster. Under the hood, these processes are actors
of the Akka framework [X], which provides the backbone of the Flink communication system.
In addition, the JobClient submits jobs to the JobManager and waits for the result.
Flink implements fault tolerance using a combination of stream replay and checkpointing83. A
checkpoint is related to a specific point in each of the input streams along with the
corresponding state for each operator. A streaming dataflow can be resumed from a checkpoint
while maintaining consistency (exactly-once processing semantics) by restoring the state of the
operators and replaying the events from the point of the checkpoint. The distributed
snapshotting used by Flink is implemented using stream barriers84. These barriers are injected
into the data stream and flow with the records as part of it. A barrier separates the records in
the data stream into the set of records that goes into the current snapshot, and the records that
go into the next snapshot. When an intermediate operator has received a barrier for snapshot n
from all of its input streams, it emits a barrier message conveying the identifier n to all of its
outgoing streams. Once a sink operator receives the barrier n from all of its input streams, it
acknowledges that snapshot n to the checkpoint coordinator. After all sinks have acknowledged
a snapshot, it is considered complete.

82 “Flink: Distributed Runtime Environment.” https://ci.apache.org/projects/flink/flink-docs-release-
1.10/concepts/runtime.html
83 “Flink: Dataflow Programming Model.” https://ci.apache.org/projects/flink/flink-docs-release-1.10/concepts/programming-
model.html
84 “Flink: Data Streaming Fault Tolerance.” https://ci.apache.org/projects/flink/flink-docs-release-
1.10/internals/stream_checkpointing.html

TEACHING D2.1 ICT-01-2019/№ 871385

TEACHING - 57 - January, 2020

 WindFlow

Traditional SPSs are far from being efficient where a single machine is concerned. Furthermore,
their run-time systems have not been designed by taking into account the features of a highly
heterogeneous computing environment like the one of the TEACHING eco-system, featuring
embedded devices with power-limited capabilities. Furthermore, such traditional tools do not
have support to co-processors like GPUs and FPGAs.
For these reasons, our activities are focused on selecting and even implementing from scratch
suitable streaming libraries for achieving the goals and challenges of the project. Although
traditional SPSs will remain valuable as a baseline, we are investigating the use of streaming
libraries developed internally by the UNIPI team, and in particular the WindFlow85 C++17
library. This research library adopts a skeletal approach to stream processing, where a rich set
of predefined operators is provided to the developer such as Map, Filter, FlatMap,
Accumulators and window-based aggregators. Under the hood, WindFlow uses FastFlow86, a
C++ parallel programming framework that provides a number of parallel building blocks which
are in turn built upon a low-level runtime support based on non-blocking multi-threading with
lock-less synchronizations. From the API perspective, WindFlow provides a specific construct
called MultiPipe used to compose together operators and to build complex streaming DAGs.
Internally, a MultiPipe is a composition of the FastFlow concurrent building blocks (combiners,
pipes and all-to-alls) organized and nested according to formal semantics rules. As already
stated by some preliminary research results, WindFlow is capable of providing significantly
superior performance (higher throughput and lower processing latency) when the entire
streaming DAG is run on a single multicore-based machine, where traditional SPSs exhibit
instead too much overhead. For this reason, after the preliminary analysis developed in the first
step of the T2.3 activities, WindFlow has been selected as a promising library to be extended
for the project’s purposes, thus providing support to embedded GPUs and FPGAs to perform
localized streaming pipelines in the embedded resources available in the TEACHING use cases.

5.6 Communication paradigms for IoT sensors and wearable devices

In this section, we survey those Machine-to-Machine (M2M) communication paradigms and
protocols for the Internet of Things (IoT) that are candidate to be exploited to support network
communications of HPC2I. We examine the two most diffused paradigm, i.e., request/response
and publish/subscribe, and discuss the performance trade-offs in existing designs applied in the
context of node-centric and data-centric network architectures. This survey contributes to
compare the different solutions to derive possible outcomes on where one is more suitable in
place of the other one and vice-versa.
A point worth stressing is that data transfer patterns in the M2M-driven Internet of Things will
differ fundamentally from those in the classic “human-to-human” (H2H) internet. M2M
communications will feature orders of magnitude more nodes than H2H, most of which create
low-bandwidth, upload-biased traffic. Many M2M applications need to deliver and process
information in real time, or near- real-time, and many nodes have to be extremely low-power

85 G. Mencagli, M. Torquati, D. Griebler, M. Danelutto and L. G. Fernandes. Raising the Parallel Abstraction Level for
Streaming Analytics Applications. IEEE Access, 2019, IEEE. ISSN: 2169-3536, DOI: 10.1109/ACCESS.2019.2941183
86 M. Aldinucci, M. Danelutto, P. Kilpatrick, and M. Torquati, Fast- Flow: High-Level and Efficient Streaming on Multicore.
John Wiley & Sons, Ltd, 2017, ch. 13, pp. 261–280. [Online]. Available: https:
//onlinelibrary.wiley.com/doi/abs/10.1002/9781119332015.ch13

TEACHING D2.1 ICT-01-2019/№ 871385

TEACHING - 58 - January, 2020

or self-powered (e.g., solar powered) devices. M2M and IoT share common features, which
may be mandatory or not, which are:
a) Things: The “things” in the IoT like the “machines” in M2M, are physical entities whose
identity, state (or the state of whose surroundings) is capable of being relayed to an internet-
connected IT infrastructure. Almost anything to which you can attach a sensor can become a
node in the Internet of Things.
b) Sensors: These are the components of “things” that gather and/or disseminate data, being on
location, altitude, velocity, temperature, illumination, motion, power, humidity, blood sugar,
etc. These devices are rarely “computers” as we generally understand them, although they may
contain many or all of the same elements (processor, memory, storage, inputs and outputs, OS,
software). The key point is that they are increasingly cheap, plentiful and can communicate
either each others as it was in M2M communication platforms, or directly with the Internet or
with Internet-connected devices.
c) Local-area Comms: All IoT sensors require some means of relaying data to the outside world.
There’s a plethora of short-range, body area, personal area, or local area wireless technologies
available, including RFID, NFC, Wi-Fi, 6LoW- PAN, Bluetooth (including Bluetooth Low
Energy), XBee, Zigbee, Z-Wave, and Wireless M-Bus.
d) Wide-area Comms: For long range, or wide-area, links there are existing mobile networks
(using GSM, GPRS, 3G, LTE or WiMAX, for example) and satellite connections. New wireless
networks such as the ultra-narrowband SIGFOX, LoRa, and NB-IoT are also emerging to cater
specifically for M2M connectivity. Fixed ’things’ in convenient locations could use wired
Ethernet or phone lines for wide-area connections.
e) Servers, Brokers, Proxies: Some types of M2M installations, such as a smart home or office,
use a local server to collect and analyze data both in real time and episodically from assets on
the local area network. These on-premise servers or simpler gateways (right) usually connect
also to cloud-based storage and services. According to the communication architectures, there
might be intermediate servers, called brokers, which manage the distribution and forwarding of
messages toward other nodes, or proxies, which relay local non-IP networks with Internet IP
networks.
f) Storage and analytics: Today’s internet generates a lot of data, but IoT is entirely another
matter. That will require massive, scalable, storage and processing capacity, which almost
invariably resides in the cloud, except for specific localized or security-sensitive cases. Service
providers obviously have access here, not only to curate the data and tweak the analytics, but
also for line-of-business processes such as customer relations, billing, technical support and so
on.
g) User-facing services: Subsets of the data and analyses from the IoT will be available to users
or subscribers, presented via easily accessible and navigable web interfaces on a full spectrum
of secure client devices.

 Node-centric communication paradigms

The client-server model is a structure that divides, in a clear way, the producers (or providers)
of a service from those who are requesting it, called clients. In this paradigm, a client initiates
a connection to the server, makes a request and obtains the data from the server. The clearest
example of this schema is the Web itself: a server has certain information and makes it available
to clients, that will connect to the server and get the information, when needed.

TEACHING D2.1 ICT-01-2019/№ 871385

TEACHING - 59 - January, 2020

Such interaction schema relies on the request-response pattern: a resource is offered to a
consumer when requested, not when available. Therefore, it is a client responsibility to poll for
a certain resource at a given rate if it wants to be up-to-date. Again, the Web itself is a clear
example of this architecture: the great majority of the available resources is available on request,
and not pushed to consumers (in a solicited or unsolicited way). A set of clients connect to a set
of servers to obtain the data they need.

5.6.1.1 WebSocket

The WebSocket protocol provides two-way communication over a single TCP channel. It is an
IETF standard since 2011, the RFC 645587. WebSocket was born to be implemented in web
browsers and servers, but it can be also used for typical client-server applications, thus not
relying on a web architecture. It has no relationship to the HTTP protocol, except for the
handshake, that is interpreted as an Upgrade Request88 with value containing the word
websocket. Several browsers support this protocol nowadays.
Before WebSocket, the creation of web applications that need bidirectional communication had
have the counter-effect of abusing the HTTP protocol, by using a large number of HTTP
connections to poll the server for updates. A simple TCP connection is the solution, according
to the design idea of the WebSocket protocol. A client opens a WebSocket based
communication to a server, then they can communicate on this TCP-based channel. The
WebSocket protocol provides a way to send unsolicited contents to a client, by using a TCP
connection with port numbers 80/443.
Conceptually, WebSocket is just a layer on top of TCP, indeed a very simple protocol. Its
simplicity is one of the main features, because the overhead is reduced (only 2 bytes per
transmitted request / response89). Trying to summarize its features, you can list the following:

• bidirectional: there are no predefined message patterns such as request / response. The
client and the server can send messages to the other part.

• full-duplex: client and server can talk in an independent way of each other; there is no
such pattern as in HTTP, where only a part is talking at a time.

• single TCP connection: the same TCP connection is used by a WebSocket for its whole
lifecycle, thus avoiding to open and close a TCP connection for each request.

• minimal overhead: after the initial handshake, the data is minimally framed with 2 bytes.
An unprotected WebSocket server and resource name is identified by the ws URI scheme name,
whilst a TLS protected WebSocket server and resource name is identified by the wss URI
scheme name.

5.6.1.2 REST - Representational state transfer

Representational state transfer (REST) is an architectural style consisting of a coordinated set
of architectural constraints applied to components, connectors, and data elements90. The REST-
style architecture consists of clients and servers. An important concept in REST is the existence

87 http://tools.ietf.org/html/rfc6455
88 http://tools.ietf.org/html/rfc6455
89 http://tools.ietf.org/html/rfc6455
90 R. Fielding and R. Taylor, “Principled design of the modern web architecture,” in Software Engineering, 2000.
Proceedings of the 2000 International Conference on, 2000, pp. 407–416.

TEACHING D2.1 ICT-01-2019/№ 871385

TEACHING - 60 - January, 2020

of resources (e.g., sensors sources of specific information), each of which is referenced with a
global identifier (e.g., a Uniform Resource Identifier URI in HTTP91). In order to manipulate
these resources, components of the network (user agents and origin servers) communicate via
a standardized interface (e.g., HTTP) and exchange representations of these resources (the
actual documents conveying the information). REST was initially described in the context of
[2], which already provides a rich and uniform vocabulary for applications based on the transfer
of meaningful representational state. REST applications maximize the use of the existing, well-
defined interface and other built-in capabilities, provided by the chosen network protocol, and
minimize the addition of new application-specific features on top of it. Clients initiate requests
to servers; servers process requests and return the appropriate replies. Such a request-response
(Req-Res) paradigm accesses and manipulates the resources. This paradigm is also historically
known in computer science as remote procedure call (RPC) that allows a computer program
(the client) to cause a procedure to be executed in another address space (the server) by sending
a request message; the remote server sends a response with the execution to the client, and the
application continues its process.
In REST, a resource can be anything that can be identified by URIs (e.g., documents, images,
and files). REST uses the GET, PUT, POST, and DELETE operations of HTTP to access those
resources. However, the protocols used for RESTful architecture are not appropriate for
resource constrained networks and devices92. A large overhead of HTTP implies packet
fragmentation and performance degradation relatively to M2M devices. Also, TCP flow
control, which is used at transport layer by HTTP, is not appropriate for M2M devices and the
overhead is too high for short transactions. To extend the REST architecture for resource
constrained M2M devices, constrained application protocol (CoAP)93 has been defined. CoAP
is an application protocol intended to be used in simple devices, allowing them to communicate
over the Internet. CoAP includes a subset of the HTTP functionalities, optimized for M2M
applications. It also supports multicast, very low overhead, and asynchronous message
exchanges over a user datagram protocol (UDP) for M2M devices.
REST is a software architectural style, focused on the roles of its parts, instead of the parts
themselves. The parts are:

• components: abstract software unit accessible via interface
• connectors: abstract communication medium between the components
• data: information exchanged between components by using the connectors

As software architecture, several formal constraints can be identified:

• client-server communication style: the providers and the consumers of the services are
separated and independent and the communication is possible by using an interface.

• stateless communication: servers do not maintain any information related to the clients;
each request is self-contained. A state information can be maintained and used to exploit
authentication and authorization mechanisms within a session, but it expires in a given
amount of time.

91 T. B.-L. R. Fielding; J. Gettys; J. Mogul; H. Frystyk; L. Masinter; P. Leach, “Hypertext transfer protocol – http/1.1, request
for comments: 2616,” Network Working Group, Tech. Rep., June 1999
92 W. Colitti, K. Steenhaut, N. De Caro, B. Buta, and V. Dobrota, “Rest enabled wireless sensor networks for seamless
integration with web applications,” in Mobile Adhoc and Sensor Systems (MASS), 2011 IEEE 8th International Conference
on, Oct 2011, pp. 867–872
93 Z. S. K. H. C. Bormann, “Constrained application protocol (coap),” CoRE Working Group Internet-Draft, Tech. Rep.,
December 2013

TEACHING D2.1 ICT-01-2019/№ 871385

TEACHING - 61 - January, 2020

• cache mechanism: each response from a server / producer must define itself as cacheable
or not, to improve scalability and performance of the whole architecture.

5.6.1.3 WAMP - Web Application Messaging Protocol

The WebSocket Protocol is already built into modern browsers and provides bidirectional, low-
latency message-based communication. However, as such, WebSocket is quite low-level and
only provides raw messaging. Modern Web applications often have a need for higher level
messaging patterns. This is where the WAMP (Web Application Messaging Protocol) protocol
enters. WAMP adds the higher-level messaging patterns of RPC (Remote Procedure Call) and
Publish/Subscribe to WebSocket - within one protocol. Technically, WAMP is an officially
registered WebSocket subprotocol (runs on top of WebSocket) that uses JSON as message
serialization format.
Two interaction styles are possible:

• RPC-style: three types of peer are possible: Caller, Dealer, and Callee. A Callee registers
procedures with an application code to call remotely from Callers under application
defined, unique names. A Dealer performs the routing of calls and results between
Callers and Callees.

• Publish/Subscribe style: it is a messaging pattern involving peers of three roles:
Publisher, Broker and Subscriber. A Subscriber subscribes to topics under application
defined, unique names to receive events published by Publishers to such topics. A
Broker performs the routing of events from Publishers to Subscribers.

A WAMP environment is called Realm, a routing and administrative domain protected by
authentication and authorization. Two peers in a Realm can open a transient conversation,
called Session, that runs over a Transport. The default transport is the WebSocket protocol, but
also HTTP 1.0/1.1 long polling, Batched and Multiplexed Transport are possible. In the Batched
schema, more than one WAMP message is transmitted per WebSocket message, while in the
Multiplexed schema a single physical connection is shared between multiple logical Transport
channels.

 Data-centric communication infrastructure

For large-scale distributed systems, Data centric communication based on the publish/subscribe
paradigm plays a key role on traffic volume control. More data filtering efficient and adaptive
to different traffic conditions bring some solutions at the high layers of the communication
model. In the context of the TEACHING project we are considering such approaches as good
candidates for the development of the communication channels supported by HPC2I.
The remaining of this section briefly introduces the publish/subscribe paradigm, a few
approaches based on it and a potential exploitation of such solutions in TEACHING. In
particular, Section 5.6.2.1 introduce the publish/subscribe paradigm. Sections 5.6.2.2, 5.6.2.3,
5.6.2.4, 5.6.2.5, 5.6.2.6 and 5.6.2.7 reports some technologies and tools that are candidate to be
exploited as baseline on which to build the advanced solutions that TEACHING HPC2I is
aimed at providing.

5.6.2.1 The Publish/Subscribe Paradigm

The publish/subscribe pattern is a loosely coupled, many-to-many asynchronous paradigm,
which distinguish the entities who provide a service from those who are interested on that
service. Each of these types of entity are not required to exist at the same time. The nodes

TEACHING D2.1 ICT-01-2019/№ 871385

TEACHING - 62 - January, 2020

belonging to these networks are more interested in the information than the identity of the
information producers. The data is therefore delivered in function of the node’s interests. This
paradigm is inherently anonymous, in that the communication partners are not required to
identify the party they want to talk to. For example, instead of naming a publisher to receive
events from, the subscriber simply describes the characteristics of the events it wants to
receive94. Publish/subscribe messaging systems are widely used in enterprise networks, mainly
because of their scalability and support of a dynamic application topology. These features are
achieved by decoupling the various communicating components from each other such that it is
easy to add new data sources/consumers or to replace existing modules.
When a node wants to register its interest into a certain information, it registers itself through
an operation called subscription. That node becomes a subscriber. The nodes who instead
produce information are called publishers. The entity in charge of registering the subscription
requests and guaranteeing that data is delivered from the publishers to the subscribers is called
broker (Figure 11). Several protocols based on this paradigm exist, aiming at vast application
scenarios, from M2M to enterprise level function.

Figure 11 The publisher/subscriber paradigm.

5.6.2.2 Message Queuing Telemetry Transport

MQTT is an extremely lightweight publish/subscribe messaging transport protocol targeted for
telemetry applications on constrained de- vices based on TCP/IP. The protocol subscriptions
are based on topics, which are hierarchically organized strings. A message can be flagged as
retained, which means the broker stores and sends that message to all the future clients which
subscribe to the given topic. The protocol also supports different types of end-to-end QoS,
depending on the application needs:

• QoS 0: Best effort, no guarantee of delivery
• QoS 1: At least one delivery is guaranteed but more copies of the message can

be received
• QoS 2: Only one delivery is guaranteed and unique for every message.

MQTT is completely unaware about the content of the payload and it is characterized by a very
small transport overhead in order to reduce the network traffic as much as possible. MQTT also
implements a mechanism to notify interested parties about abnormal client disconnections
implementing a last will feature. This mechanism allows a client to communicate to the broker
a last will message it wants to be sent on behalf of the client in case it experiences an unexpected

94 Y. Huang and H. Garcia-Molina, “Publish/subscribe in a mobile environment,” Wireless Networks, vol. 10, no. 6, pp. 643–
652, 2004

JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 1, JUNE 2014 7

In this case, SPDY outperforms HTTP by assuring an average
reduction of 23% in terms of loading times of pages. As
regards possible architectural enhancements, in reference [?]
a protocol and caching infrastructure to improve performance
in multi-domain and mobile scenarios is proposed.

As said, to cope with the additional complexities of Web
2.0 applications, the HTTP protocol specification has been
partially amended over the years. In details, in its last incar-
nation – the HTTP/1.1 [?], it relies on multiple connections to
increase the concurrency of the process of retrieving objects.
Also, HTPP/1.1 uses pipelining to send multiple requests over
a single TCP connection without waiting for a response. How-
ever, achievable gains are limited by the protocol specification,
since the server must generate responses in the same order of
requests. Thus, the flow of each connection is ruled according
to a first-in-first-out policy. In turns, this can lead to Head of
Line (HOL) blocking, where the first packet locks an entire
line. Besides, HTTP pipelining is still optional, and requires
to be implemented within both the client and the server. As
today, it is not widely available into existing browsers.

To prevent similar issues, SPDY introduces an ad-hoc
framing layer (also named session layer) [?] to multiplex
concurrent streams atop a single persistent TCP connection, as
well as any other reliable transport services. Besides, SPDY
offers a settings session-wide message enabling a proper
negotiation of transport parameters between endpoints, e.g.,
to report the size of the Initial Congestion Window (ICW) of
the TCP to the remote server. Furthermore, it is optimized for
HTTP-like request-response conversations, and also guarantees
full backward compatibility with HTTP. In more details, SPDY
offers four major additional improvements compared to HTTP:

1) multiplexed requests: to increase possible gains, SPDY
does not impose any limits to the number of concurrent
requests that can be sent over a single connection;

2) prioritized requests: to avoid congestion phenomena
due to scarce resources at the network level, clients can
indicate in-line objects to be delivered first. This can
enhance the Quality of Experience (QoE) of a service,
even in the presence of incomplete pages;

3) compressed headers: modern Web applications force the
browser to send a significant amount of redundant data
in the form of HTTP headers. Since each Web page may
require up to 100 sub-requests, the benefit in terms of
data reduction could be relevant;

4) server pushed streams: this feature enables ob-
jects/resources to be pushed in advance from servers
to clients without additional requests.

However, mechanisms 1) – 4) could be partially voided by
HOL blocking at the transport level. This is even truer when
in the presence of packet losses triggering the error recovery
strategies of the TCP, which could invalidate compression and
prioritization. For what concerns all the protocol resources
(e.g., documentation and software), they are provided by the
SPDY Google Developer Group. In addition, performance
evaluations in real-world use cases have been partially per-
formed within the framework of the Chromium Projects1,

1http://www.chromium.org/chromium-projects

which spawned the”Let’s make the Web faster” initiative2.

IV. DATA-CENTRIC COMMUNICATION INFRASTRUCTURE

A. The Publish/Subscribe Paradigm
(by: La Rosa & Palumbo)

The publish/subscribe pattern is a loosely coupled, many-to-
many asynchronous paradigm, which distinguish the entities
who provide a service from those who are interested on
that service. Each of these types of entity are not required
to exist at the same time. The nodes belonging to these
networks are more interested in the information than the
identity of the information producers. The data is therefore
delivered in function of the nodes interests. This paradigm
is inherently anonymous, in that the communication partners
are not required to identify the party they want to talk to. For
example, instead of naming a publisher to receive events from,
the subscriber simply describes the characteristics of the events
it wants to receive[5]. Publish/subscribe messaging systems are
widely used in enterprise networks, mainly because of their
scalability and support of a dynamic application topology[?].
These features are achieved by decoupling the various commu-
nicating components from each other such that it is easy to add
new data sources/consumers or to replace existing modules[?].

When a node wants to register its interest into a certain
information, it registers itself through an operation called
subscription. That node becomes a subscriber. The nodes
who instead produce information are called publishers. The
entity in charge of registering the subscription requests and
guaranteeing that data is delivered from the publishers to the
subscribers is called broker (Fig. 1). Several protocols based

3XEOLVKHU��

3XEOLVKHU�Q

6XEVFULEHU��

6XEVFULEHU��

6XEVFULEHU�Q

%URNHU

SXEOLVK

VXEVFULEH
XQVXEVFULEH

QRWLI\

Fig. 1. The publisher/subscriber paradigm.

on this paradigm exist, aiming at vast application scenarios,
from M2M to enterprise level function.

1) Message Queuing Telemetry Transport: MQTT is an
extremely lightweight publish/subscribe messaging transport
protocol targeted for telemetry applications on constrained de-
vices based on TCP/IP. The protocol subscriptions are based on
topics, which are hierarchically organized strings. A message
can be flagged as retained, which means the broker stores and
sends that message to all the future clients which subscribe to
the given topic. The protocol also supports different types of
end-to-end QoS, depending on the application needs:
• QoS 0: Best effort, no guarantee of delivery

2http://www.chromium.org/spdy/spdy-whitepaper

TEACHING D2.1 ICT-01-2019/№ 871385

TEACHING - 63 - January, 2020

communication error. Implementations of MQTT broker are Mosquitto, HiveMQ and
CloudMQTT.

Figure 12	MQTT-SN architecture.

5.6.2.3 Message Queuing Telemetry Transport - Sensor Network

MQTT-SN is a publisher/subscriber protocol based on MQTT and targeted for Wireless Sensor
Networks (WSNs). Extending the enterprise publisher/subscriber system into the WSNs also
enables a seamless integration of the WSNs into the enterprise network. This makes the field
data collected by the SAs (Sensors and Actuators) available to all applications as any other
enterprise information and enables the control of the SAs from any enterprise application.
MQTT-SN is designed aiming to an optimized implementation on low-cost, battery-operated
devices with limited processing and storage resources. MQTT-SN is designed in such a way
that it is unaware of the underlying networking services. Any network which provides a bi-
directional data transfer service between any node and a particular one (a gateway) should be
able to support MQTT- SN (Figure 12). There are three kinds of MQTT-SN components:
clients, gateways and forwarders.
MQTT-SN clients connect themselves to a MQTT server via a MQTT-SN gateway using the
MQTT-SN protocol. A MQTT-SN gateway may or may not be integrated with a MQTT server.
In case of a stand- alone gateway, the MQTT protocol is used between the MQTT server and
the MQTT-SN gateway. Its main function is the translation between MQTT and MQTT-SN.
MQTT-SN clients can also access a gateway via a forwarder in case the gateway is not directly
attached to their network. The forwarder simply encapsulates the MQTT-SN frames it receives
on the sensor network side and forwards them unchanged to the gateway; in the opposite
direction, it decapsulates the frames it receives from the gateway and sends them to the clients,
unchanged too95. There are two types of MQTT-SN gateway:

• transparent: for each connected MQTT-S client it sets up and maintains and
independent MQTT connection to the broker

• aggregating: all the connections from the clients are sent to the broker over an
unique MQTT connection. This increases the scalability of the network when
having a large number of SAs.

95 A. Stanford-Clark and H. L. Truong, “Mqtt for sensor networks (mqtt-sn) protocol specification,” 2013

JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 1, JUNE 2014 8

• QoS 1: At least one delivery is guaranteed but more
copies of the message can be received

• QoS 2: Only one delivery is guaranteed and unique for
every message

MQTT is completely unaware about the content of the payload
and it is characterized by a very small transport overhead
in order to reduce the network traffic as much as possible.
MQTT also implements a mechanism to notify interested
parties about abnormal client disconnections implementing a
last will feature. This mechanism allows a client to commu-
nicate to the broker a last will message it wants to be sent
on behalf of the client in case it experiences an unexpected
communication error. Implementations of MQTT broker are
Mosquitto, HiveMQ and CloudMQTT.

2) Message Queuing Telemetry Transport - Sensor Network:
MQTT-SN is a publisher/subscriber protocol based on MQTT
and targeted for Wireless Sensor Networks (WSNs). Extending
the enterprise publisher/subscriber system into the WSNs also
enables a seamless integration of the WSNs into the enterprise
network. This makes the field data collected by the SAs
(Sensors and Actuators) available to all applications as any
other enterprise information and enables the control of the
SAs from any enterprise application. MQTT-SN is designed
aiming to an optimized implementation on low-cost, battery-
operated devices with limited processing and storage resources.
MQTT-SN is designed in such a way that it is unaware of the
underlying networking services. Any network which provides
a bi-directional data transfer service between any node and a
particular one (a gateway) should be able to support MQTT-
SN (Fig. 2). There are three kinds of MQTT-SN components:

0477�61
FOLHQW

0477�61
FOLHQW

0477�61
FOLHQW

0477�61
FOLHQW

0477�61
JDWHZD\

0477�61
IRUZDUGHU

0477
EURNHU

0477�61
JDWHZD\

0477�61

0477�61

0477�61

0477�6

0477

Fig. 2. MQTT-SN architecture.

clients, gateways and forwarders. MQTT-SN clients connect
themselves to a MQTT server via a MQTT-SN gateway using
the MQTT-SN protocol. A MQTT-SN gateway may or may
not be integrated with a MQTT server. In case of a stand-
alone gateway, the MQTT protocol is used between the MQTT
server and the MQTT-SN gateway. Its main function is the
translation between MQTT and MQTT-SN. MQTT-SN clients
can also access a gateway via a forwarder in case the gateway
is not directly attached to their network. The forwarder simply
encapsulates the MQTT-SN frames it receives on the sensor
network side and forwards them unchanged to the gateway;
in the opposite direction, it decapsulates the frames it receives
from the gateway and sends them to the clients, unchanged
too[6]. There are two types of MQTT-SN gateway:

• transparent: for each connected MQTT-S client it sets
up and maintains and independent MQTT connection to
the broker

• aggregating: all the connections from the clients are sent
to the broker over an unique MQTT connection. This
increases the scalability of the network when having a
large number of SAs.

3) Constrained Application Protocol: In addition to request-
response model, CoAP also supports publish/subscribe archi-
tecture using an extended GET method. Unlike MQTT, the
publish-subscribe model of CoAP uses Universal Resource
Identifier (URI) instead of topics. This means that subscribers
will subscribe to a particular resource indicated by the URI
U. When a node publishes data D to the URI U, then all the
subscribers are notified about the new value as indicated in D.
Since CoAP runs on top of the inherently not reliable UDP,
it provides its own reliability mechanism through the use of
confirmable and non-confirmable messages[7]. The observers
register with the subject using the GET request with a special
observe option activated. The subject puts the observer, if it
is allowed, in the list of the interested entities and responds
to the observer with an immediate state of the resource.
After the initial response each subsequent notification is an
additional CoAP response sent by the server in reply to the
GET request and includes a complete representation of the
new resource state[8]. CoAP also enables high scalability and
efficiency through a more complex architecture, which in fact
supports the use of caches and intermediaries (proxy) nodes
that multiplex the interest of multiple subscribers in the same
event into a single association[9] (Fig. 3).

Fig. 3. CoAP observer model architecture.

4) Extensible Messaging and Presence Protocol: XMPP
is an open standard, real-time and asynchronous messaging
system that delivers messages in a distributed network of
presence-aware nodes. The basic protocol data unit in XMPP
is an XML ”stanza”, which is essentially a fragment of XML.
XMPP has a Publish-Subscribe functionality, specified as an
extension in XEP-00603. The protocol enables XMPP entities
to create nodes (topics) at a pub/sub service and publish
information at those nodes; an event notification (with or
without payload) is then broadcasted to all entities that have
subscribed to the node[10].

3http://www.xmpp.org/extensions/xep-0060.html

TEACHING D2.1 ICT-01-2019/№ 871385

TEACHING - 64 - January, 2020

5.6.2.4 Constrained Application Protocol

In addition to request-response model, CoAP also supports publish/subscribe architecture using
an extended GET method. Unlike MQTT, the publish-subscribe model of CoAP uses Universal
Resource Identifier (URI) instead of topics. This means that subscribers will subscribe to a
particular resource indicated by the URI U. When a node publishes data D to the URI U, then
all the subscribers are notified about the new value as indicated in D. Since CoAP runs on top
of the inherently not reliable UDP, it provides its own reliability mechanism through the use of
confirmable and non-confirmable messages96. The observers register with the subject using the
GET request with a special observe option activated. The subject puts the observer, if it is
allowed, in the list of the interested entities and responds to the observer with an immediate
state of the resource. After the initial response each subsequent notification is an additional
CoAP response sent by the server in reply to the GET request and includes a complete
representation of the new resource state97. CoAP also enables high scalability and efficiency
through a more complex architecture, which in fact supports the use of caches and
intermediaries (proxy) nodes that multiplex the interest of multiple subscribers in the same
event into a single association98 (Figure 13).

Figure 13 CoAP observer model architecture.

5.6.2.5 Extensible Messaging and Presence Protocol

XMPP is an open standard, real-time and asynchronous messaging system that delivers
messages in a distributed network of presence-aware nodes. The basic protocol data unit in
XMPP is an XML “stanza”, which is essentially a fragment of XML. XMPP has a Publish-
Subscribe functionality, specified as an extension in XEP-0060.

96 D. Thangavel, X. Ma, A. Valera, H.-X. Tan, and C. K.-Y. Tan, “Performance evaluation of mqtt and coap via a common
middleware,” in Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), 2014 IEEE Ninth International
Conference on. IEEE, 2014, pp. 1–6
97 S. Bandyopadhyay and A. Bhattacharyya, “Lightweight internet protocols for web enablement of sensors using constrained
gateway devices,” in Computing, Networking and Communications (ICNC), 2013 Interna- tional Conference on. IEEE, 2013,
pp. 334–340
98 E. G. Davis, A. Calveras, and I. Demirkol, “Improving packet delivery performance of publish/subscribe protocols in wireless
sensor networks,” Sensors, vol. 13, no. 1, pp. 648–680, 2013

JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 1, JUNE 2014 8

• QoS 1: At least one delivery is guaranteed but more
copies of the message can be received

• QoS 2: Only one delivery is guaranteed and unique for
every message

MQTT is completely unaware about the content of the payload
and it is characterized by a very small transport overhead
in order to reduce the network traffic as much as possible.
MQTT also implements a mechanism to notify interested
parties about abnormal client disconnections implementing a
last will feature. This mechanism allows a client to commu-
nicate to the broker a last will message it wants to be sent
on behalf of the client in case it experiences an unexpected
communication error. Implementations of MQTT broker are
Mosquitto, HiveMQ and CloudMQTT.

2) Message Queuing Telemetry Transport - Sensor Network:
MQTT-SN is a publisher/subscriber protocol based on MQTT
and targeted for Wireless Sensor Networks (WSNs). Extending
the enterprise publisher/subscriber system into the WSNs also
enables a seamless integration of the WSNs into the enterprise
network. This makes the field data collected by the SAs
(Sensors and Actuators) available to all applications as any
other enterprise information and enables the control of the
SAs from any enterprise application. MQTT-SN is designed
aiming to an optimized implementation on low-cost, battery-
operated devices with limited processing and storage resources.
MQTT-SN is designed in such a way that it is unaware of the
underlying networking services. Any network which provides
a bi-directional data transfer service between any node and a
particular one (a gateway) should be able to support MQTT-
SN (Fig. 2). There are three kinds of MQTT-SN components:

Fig. 2. MQTT-SN architecture.

clients, gateways and forwarders. MQTT-SN clients connect
themselves to a MQTT server via a MQTT-SN gateway using
the MQTT-SN protocol. A MQTT-SN gateway may or may
not be integrated with a MQTT server. In case of a stand-
alone gateway, the MQTT protocol is used between the MQTT
server and the MQTT-SN gateway. Its main function is the
translation between MQTT and MQTT-SN. MQTT-SN clients
can also access a gateway via a forwarder in case the gateway
is not directly attached to their network. The forwarder simply
encapsulates the MQTT-SN frames it receives on the sensor
network side and forwards them unchanged to the gateway;
in the opposite direction, it decapsulates the frames it receives
from the gateway and sends them to the clients, unchanged
too[6]. There are two types of MQTT-SN gateway:

• transparent: for each connected MQTT-S client it sets
up and maintains and independent MQTT connection to
the broker

• aggregating: all the connections from the clients are sent
to the broker over an unique MQTT connection. This
increases the scalability of the network when having a
large number of SAs.

3) Constrained Application Protocol: In addition to request-
response model, CoAP also supports publish/subscribe archi-
tecture using an extended GET method. Unlike MQTT, the
publish-subscribe model of CoAP uses Universal Resource
Identifier (URI) instead of topics. This means that subscribers
will subscribe to a particular resource indicated by the URI
U. When a node publishes data D to the URI U, then all the
subscribers are notified about the new value as indicated in D.
Since CoAP runs on top of the inherently not reliable UDP,
it provides its own reliability mechanism through the use of
confirmable and non-confirmable messages[7]. The observers
register with the subject using the GET request with a special
observe option activated. The subject puts the observer, if it
is allowed, in the list of the interested entities and responds
to the observer with an immediate state of the resource.
After the initial response each subsequent notification is an
additional CoAP response sent by the server in reply to the
GET request and includes a complete representation of the
new resource state[8]. CoAP also enables high scalability and
efficiency through a more complex architecture, which in fact
supports the use of caches and intermediaries (proxy) nodes
that multiplex the interest of multiple subscribers in the same
event into a single association[9] (Fig. 3).

2EVHUYHU

6XEMHFW

2EVHUYHU

2EVHUYHU

2EVHUYHU

,QWHUPHGLDU\�
3UR[\

Fig. 3. CoAP observer model architecture.

4) Extensible Messaging and Presence Protocol: XMPP
is an open standard, real-time and asynchronous messaging
system that delivers messages in a distributed network of
presence-aware nodes. The basic protocol data unit in XMPP
is an XML ”stanza”, which is essentially a fragment of XML.
XMPP has a Publish-Subscribe functionality, specified as an
extension in XEP-00603. The protocol enables XMPP entities
to create nodes (topics) at a pub/sub service and publish
information at those nodes; an event notification (with or
without payload) is then broadcasted to all entities that have
subscribed to the node[10].

3http://www.xmpp.org/extensions/xep-0060.html

TEACHING D2.1 ICT-01-2019/№ 871385

TEACHING - 65 - January, 2020

The protocol enables XMPP entities to create nodes (topics) at a pub/sub service and publish
information at those nodes; an event notification (with or without payload) is then broadcasted
to all entities that have subscribed to the node99.

Figure 14 AMQP model

5.6.2.6 Advanced Message Queueing Protocol

The Advanced Message Queuing Protocol (AMQP) is another open standard publish/subscribe
protocol that provides reliable queueing, flexible routing, and topic-based messaging. The
protocol defines both the network wire-level protocol and the messaging model. Information is
organized into frames that are sent over channels, which are independent threads within a single
socket connection. Several brokers are available, including RabbitMQ, OpenAMQ, and Apache
Qpid.

5.6.2.7 Apache KAFKA

Apache Kafka100 is an open-source distributed event streaming platform targeting high-
performance data pipelines, streaming analytics, data integration, and mission-critical
applications. Kafka is a distributed system consisting of servers and clients that communicate
via a TCP network protocol. It can be deployed on bare-metal hardware, virtual machines, and
containers in on-premise as well as cloud environments.
Servers: Kafka is run as a cluster of one or more servers that can span multiple datacenters or
cloud regions. Some of these servers form the storage layer, called the brokers.
Clients: distributed applications and microservices that read, write, and process streams of
events in parallel, at scale, and in a fault-tolerant manner even in the case of network problems
or machine failures. Kafka ships with some such clients included. Clients are available for Java
and Scala including the higher-level Kafka Streams library, for Go, Python, C/C++, and many
other programming languages as well as REST APIs.

99 http://xmpp.org/about-xmpp/technology-overview/pubsub
100 https://kafka.apache.org/intro

JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 1, JUNE 2014 9

5) Advanced Message Queueing Protocol: AMQP is another
open standard publish/subscribe protocol that provides reliable
queueing, flexible routing, and topic-based messaging. The
protocol defines both the network wire-level protocol and the
messaging model. Information is organized into frames that
are sent over channels, which are independent threads within
a single socket connection. Several brokers are available,

3XEOLVKHU

&RQVXPHU

6HUYHU

9LUWXDO�+RVW

([FKDQJH

0HVVDJH�
TXHXH

&RQVXPHU

Fig. 4. AMQP model.

including RabbitMQ, OpenAMQ, and Apache Qpid.
6) ICN: (by: Potort) Subsubsection text here.

V. A STUDY CASE

A. Service Discovery for Constrained Mobile Communications
One of the most important aspect of the IoT paradigm is

that nodes can be considered as content providers. Indeed,
nodes can gather environmental data, collect contents from the
web, and store multimedia contents. When data available on a
node are provided to the network, the computation paradigm
becomes service-oriented. With the term service we refer to
every hardware and software resource provided by a node
in the network. For the shake of simplicity, we propose in
this section a spectrum of the services potentially available,
as shown in Figure 5. Services are classified within thee

Fig. 5. Classification of services.

categories: content-based, networking and sensor-based ser-
vices. Content-based services are designed for sharing media
contents with other nodes; notable examples in this category
are services for sharing video and photo, for streaming short
videos, cooperative blogging platforms [11] or utility services
for media contents such editing or compression of images.

The category of networking services does not only include
the traditional services described in [12], [13], [14], rather,

such a category wraps services designed for sharing network-
ing functionalities with other nodes. Notable examples in this
category are services for sharing the Internet connection [15]
and services for enabling text messages or phone calls. The last
category of application services we propose is composed by
sensor-based services. This category comprises all the services
that somehow exploit sensors installed on the node such as
temperature, humidity, pressure, or light intensity sensors.

The application problem we address in this section investi-
gates how to discover and access services that are available in
the network; such a problem is also named service discovery.
Service discovery is an important area of research [16], [17],
[18], [19], many solutions have been proposed for several kinds
of scenarios such as peer-to-peer, mobile networks and also for
constrained networks.

Before reviewing some specific discovery protocols, we
describe the role that a node can play during the service
discovery process. A node acts as service provider if it offers
to other nodes some services. The service clients are nodes
that discover and access the services available in the network.
Lastly, nodes that store any information related to the services
available in the network are referred with the term service
registry.

The service discovery problem can be summarised as a four
step process composed by the advertisement, query, selection,
and access phases [16] as shown in Figure 6. Each of the four

Fig. 6. Service discovery process

steps has some specific goals, in particular:
• Advertisement: In this phase a service provider adver-

tises the services it provides by means of a service
advertisement. An advertisement is a data structure
summarising the core features of the service, such as
the identifier of the service provider, the description
of the service4, and any information related to the
quality of the service provided. It is also possibile that a
provider advertises the services provided by other nodes;
in this last case every node must store the advertisements
received along the time and forward [18] them as soon
as another node is encountered.

• Query: Service clients wiling to discover a service have
to craft a query and to propagate it in the network.

4 There are well-known methods for service classifications, relying on
syntactical or ontology-based techniques [?], [?]. These kinds of classifications
is beyond the scope of this survey work.

TEACHING D2.1 ICT-01-2019/№ 871385

TEACHING - 66 - January, 2020

Kafka Terminology

An event records the fact that something happened. Sometime is also called record or message.
Each event has a key, a value, timestamp and optional metadata headers.
Producers are client applications that write events and consumers are those that subscribe events
(eventually reading and processing them). Producers and consumers are fully decoupled. Kafka
ensures exactly-one processing property for events.
Events are organized and stored in topics. Topics in Kafka are always multi-producer and multi-
subscriber: a topic can have zero, one, or many producers that write events to it, as well as zero,
one, or many consumers that subscribe to these events. Events are not deleted after
consumption.
Topics are partitioned, meaning a topic is spread over a number of "buckets" located on
different Kafka brokers. This distributed placement of data is important for scalability because
it allows client applications to both read and write the data from/to many brokers at the same
time.
When a new event is published to a topic, it is actually appended to one of the topic's partitions.
Events with the same event key (e.g., a customer or vehicle ID) are written to the same partition,
and Kafka guarantees that any consumer of a given topic-partition will always read that
partition's events in exactly the same order as they were written.
To improve data fault-tolerance and highly-available, every topic can be replicated, even across
geo-regions or datacenters, so that there are always multiple brokers that have a copy of the
data just in case things go wrong. A common production setting is a replication factor of 3, i.e.,
there will always be three copies of a piece of data. This replication is performed at the level of
topic-partitions.

 Preliminary design of the communication infrastructure

A preliminary design of the communication infrastructure, based on a data-centric paradigm, is
under evaluation. We envision use of the frameworks Apache Kafka101 and Apache
Zookeeper102 to our use cases. We are focusing on its exploitation for the automotive use case,
in particular when NearEdge resources (i.e., Road Side Units – RSUs in this case) are available.
Each Far Edge is endowed with a MQTT broker to manage locally the data produced by the
automotive, environment and wearable sensors. The broker uses different topics to manage
private data (kept on the Far Edge), sharable data (that can be shared with the remote layer), AI
models. The local subscribers, on the Far Edge, can be services such as: the local updater of the
AI model, a local store manager, a Kafka client.
Resources located in the remote layer, either being Near Edges (e.g., RSUs) or Clouds access
and collect sharable data as well as disseminate Federated AI models. Resources standing at the
remote layer are endowed with Kafka brokers, which are able to communicate with the clients
installed on each Far Edge. The subscribers to the Kafka brokers are services that process the
Federated Data and generated Federated AI Models.

101 https://kafka.apache.org
102 https://zookeeper.apache.org

TEACHING D2.1 ICT-01-2019/№ 871385

TEACHING - 67 - January, 2020

The broker in a Near Edge can also publish the data produced by the services running in the
Cloud, or in the Near Edge itself. So, Kafka clients can subscribe to the topic of the updated
federated AI model to refresh their local AI models, running on the Far Edges.
Note that each Far Edge is allowed to post and subscribe to its own topics thus, unless a
consensus is reached, no node should be able to operate on another Far Edge topic. Only the
service that performs the model federation is allowed to publish on the topic of the AI model
of all the Far Edges.
In this case, we can assume that the communication between client and broker can be achieved
in an encrypted way, for example using TSL, with certificates issued by a private CA. These
certificates could be uploaded on the Far Edge at the same time as the TEACHING application
is installed. Based on the credentials produced for each node through the certificates, Kafka's
Access Control Lists can be exploited to define which hosts can perform operations on a given
topic or set of topics.
Far Edges moving within the geographical area on which the communication infrastructure is
deployed may need to interact with topic replicated on the Near Edges. The task of
synchronizing the brokers on the Near Edges can be either achieved using Zookeeper.
Zookeeper provides a centralized service for providing configuration information, naming,
synchronization and group services over large clusters in distributed systems. The goal is to
make these systems easier to manage with improved, more reliable propagation of changes.
ZooKeeper provides an infrastructure for cross-node synchronization by maintaining status
type information in memory on ZooKeeper servers. A ZooKeeper server maintains a copy of
the state of the entire system and persists this information in local log files.

5.7 Communication mechanisms for mobile vehicular networks

Traffic incidents are persistent problems in both developed and developing countries, which
result in a huge loss of life and property103. The majority of serious road accidents occurred due
to rear-end crashes, side crashes within intersections, and lane changes on one-way highways.
To overcome these problems, Intelligent Transportation Systems (ITS) introduces Vehicular
Ad-hoc Networks; provides the protocols that allow a vehicle to communicate with another
vehicle (V2V), with the roadside infrastructure (V2I) and also provides the Vehicle-to-
Pedestrian (V2P) communication, via a hardware module (On-Board Units) that can be system
built-in or can be connected with the wireless communication with the vehicle. In general, V2X
(Vehicle to Everything) is an umbrella term for all the communications mentioned above104.
Each vehicle outfitted with a VANET device will act as a node in the Ad-hoc network and will
be able to receive and send messages to the other vehicles or Road Side Units through the
wireless network105. To support vehicular communications Federal Communications
Commission (FCC) reserved the band of 75 MHz around 5.9 GHz for Dedicated Short-Range

103 Hossain, Ekram, et al. "Vehicular telematics over heterogeneous wireless networks: A survey." Computer Communications
33.7 (2010): 775-793
104 T. Bey and G. Tewolde, "Evaluation of DSRC and LTE for V2X," 2019 IEEE 9th Annual Computing and Communication
Workshop and Conference (CCWC), Las Vegas, NV, USA, 2019
105 K. Mehta, L. G. Malik and P. Bajaj, "VANET: Challenges, Issues and Solutions," 2013 6th International Conference on
Emerging Trends in Engineering and Technology, Nagpur, 2013, pp. 78-79

TEACHING D2.1 ICT-01-2019/№ 871385

TEACHING - 68 - January, 2020

Communications (DSRC)106. To make reliable the message exchanging among vehicles or
vehicle and Road Side Units, network diversity techniques can be adopted107.

 Dedicated Short Range Communications

DSRC has been the V2V standard and used for direct communications between moving
vehicles in the DSRC frequency range and does not depends on the cellular infrastructure.
Wireless channels under vehicular environments are complicated and difficult to estimate.
Packets suffer from multipath fading and Doppler shift because of the fast-moving vehicles that
make the conventional communications systems such as Wi-Fi, Bluetooth unfeasible for
vehicular applications. So being able to connect vehicles is one of the major challenges that
autonomous vehicles are facing. Indeed, making them exchange data on the air can enable
important safety and comfort application, which would otherwise be impossible to implement,
or lacking fundamental functionalities. Two approaches have been proposed as of now: the first
one involves the use of cellular networks, together with the upcoming 5G technology, while the
second one is currently using an evolution of the IEEE 802.11a amendment, IEEE 802.11p to
provide wireless access in vehicles referred as Wireless Access in Vehicular Environment
(WAVE). Specific enhancements for the vehicular use case were introduced, such as the
possibility to prioritize the traffic and the “Outside context of BSS” mode, allowing vehicles to
communicate directly with low latency.
Low transmission latency and packet drop rate (PDR) are two of the most important
characteristics of vehicular communications and the major indexes in evaluating the
performance of their associated technologies. DSRC permits low-latency around 2ms in
transmitting basic safety messages between vehicle to vehicle (V2V) and vehicle to roadside
infrastructure (V2I). However, one of the main challenges for DSRC technology is congestion.
As the number of vehicles increases in one channel. Since having the number of vehicles near
to 50 significantly decreases the percentage of message delivery with the increase in latency.
However, if the number of vehicles on one channel is less than 50, still if their speed increases
more than 40 km/h, the message delivery rate drops to about 60 percent with a slight impact on
latency108.
Because of the communication constraints related to DSRC, researchers are trying to seek
alternatives or complementary vehicular communication technologies. In recent years, there
has been an increasing interest in the use of cellular technologies of 4G/LTE (long-term
evolution) as well as 5G for V2X, known as cellular-V2X (C-V2X). This technology was
standardized by the 3rd generation partnership (3GPP)109. C-V2X stands for cellular Vehicle to
Everything, and it utilizes cellular technology to provide the link between the vehicle and the
rest of the world, including other vehicles, and roadside units such as traffic control systems.
DSRC still has a firm hold in the automotive application yet some automakers believe there is
more potential in C-V2X, especially with the promise of 5G in the near future. In parallel,
cellular mobile networks are also evolving rapidly. Mobile broadband systems based on 3GPP

106 Regan MA, Oxley J, Godley S, Tingvall C: Intelligent transport systems: safety and human factors issues, no. 01/01 (Royal
Automobile Club of Victoria (RACV) Ltd., 2001),. Monash University, Australia, 2001
107 S. Barre, C. Paasch, and O. Bonaventure, “Multipath TCP: from Theory to Practice,” in International Conference on
Research in Networking. Springer, 2011, pp. 444–457
108 Z. H. Mir and F. Filali, "TE and IEEE 802.11 p for vehicular networking: a performance evaluation," EURASIP Journal on
Wireless Communications
109 B. Fall, S. Niar, A. Sassi and A. Rivenq, "Adaptation of LTE-Downlink Physical Layer to V2X and T2X communications,"
International Journal of Engineering and Innovative Technology (IJEIT), vol. 4, no. 10, pp. 182-192, 2015

TEACHING D2.1 ICT-01-2019/№ 871385

TEACHING - 69 - January, 2020

and LTE standards are already deployed globally and provide mobile connectivity with high
bandwidth and low latency.
Automated driving is being seen as a technological enabler shaping the future mobility concept
and enhancing the quality of modern life by providing traffic safety together with added
environmental and comfort improvements. Being able to connect vehicles is one of the major
challenges that autonomous vehicles are facing. Indeed, making them exchange data on the air
can enable important safety and comfort applications, which would be, otherwise, complex to
implement, or lacking fundamental functionalities. As mentioned earlier V2X communications
are based on two main technologies called Cellular-V2X (C-V2X); that utilizes cellular
technology to provide the link between the vehicle and the rest of the world, including other
vehicles and infrastructure while the second one is called “Dedicated Short-Range
Communications” (DSRC), based on a Wi-Fi variant known as 802.11p, operating on 5.9 GHz
band. DSRC standards are being already implemented in the USA and Europe but now, with
the evolution of 5G, it is believed that Cellular technology may bring more advantages and
could be a strong candidate for future low-latency and high-bandwidth V2X communications.
For instance, pedestrians and cyclists usually carry smartphones, and their precise position may
be more seamlessly transmitted to vehicles when a cellular V2X technology is involved. There
is currently an on-going debate on which systems could be better for vehicular networks: either
DSRC, based on “Wi-Fi”, or C-V2X.
According to a recent 5G Automotive Association white paper, “5G high reliability, low latency
features can be fully applied to V2X”. 5G also aims to provide a high data rate for vehicular
connections. It has also been shown110 that DSRC performance is satisfactory for most safety
critical applications that require the end-to-end latency to be around 100 msec as long as the
density of vehicles is moderate but as the density increases the performance is decreasing while
C-V2X offers performance advantages over DSRC in terms of its additional link budget, higher
resilience to interference and better non-line-of-sight (NLOS) capabilities111.
5.6.2 Network Diversity Techniques
In communication scenarios with mobile nodes, such as vehicular, a very useful tool to increase
the robustness and/or reliability connection is the use of the network diversity techniques, i.e.,
the possibility of using multiple connections at the same time. In this case, the mobile user is
able to communicate with another node or communication entity using multiple physical
communication interfaces. The communication interfaces can be homogeneous (WiFi
interfaces, or LTE/5G etc.) or heterogeneous (WiFi and LTE/5G etc.). The communication
protocols must be able to manage the data streams, coming from the various interfaces as a
single end-to-end stream, making all management transparent to the involved communication
entities.
Two suitable protocols for network diversity-based communications are the MultiPath TCP
(MP-TCP)112 and the MultiPath Real-time Transport Protocol (RTP) (MP-RTP)113. The MP-
TCP is an evolution of TCP that allows the simultaneous use of multiple Network Interface
Cards (NICs) for a single TCP connection. The MP-RTP, directly related to multimedia data

110 M. I. Hassan, H. L. Vu and T. Sakurai, "Performance analysis of the IEEE 802.11 MAC protocol for DSRC safety
applications", IEEE Trans. Veh. Technol., vol. 60, no. 8, pp. 3882- 3896, Oct. 20
111 V2X Technology Benchmark Testing, Sep. 2018, [online] Available: https://www.fcc.gov/ecfs/filing/109271050222769
112 S. Barre, C. Paasch, and O. Bonaventure, “Multipath TCP: from Theory to Practice,” in International Conference on
Research in Networking. Springer, 2011, pp. 444–457
113 V. Singh, S. Ahsan, and J. Ott, “MPRTP: Multipath Considerations for Real-Time Media,” in Proceedings of the 4th ACM
Multimedia Systems Conference. ACM, 2013, pp. 190–201

TEACHING D2.1 ICT-01-2019/№ 871385

TEACHING - 70 - January, 2020

delivery, the main idea is that disjoint paths, between a sender and a receiver, can be used as a
single logical one to deliver data flows. Such an architecture can provide failover capabilities,
or can aggregate the overall capacity to increase the achievable QoE. It is worth to notice that
the bandwidth increase should be pursued by carefully choosing the links to be used so to
respect any latency constraints; in fact, heterogeneous networks typically exhibit different
network statistics. Such a precaution is crucial when jointly using terrestrial and NTNs. Live
video streaming has been proposed as MP-TCP-based114 as well, i.e., using elastic protocols
typically used in different scenarios, as for instance typical M2M/IoT ones115. Typically, real-
time multimedia streaming occurs over UDP instead of TCP, because the constraint posed by
live feeds makes un necessary, if not even detrimental, the use of retransmissions. In the case
of elastic protocol, homogeneous paths (i.e., links showing comparable network statistics)
represent a condition for satisfactory performance, otherwise corrective actions are required.
When considering both mobility and the use of multiple paths, MP-TCP116 can naturally shield
the application layer from the multiple handoffs occurring at lower layers in mobility
conditions. The use of network diversity in mobility conditions, both urban and suburban ones,
has been studied in the scientific literature. In particular, strengthen the connection reliability,
lightweight FEC solutions are preferred to resource-consuming ones, such as network coding117
in similar scenarios.

114 B. Wang, W. Wei, Z. Guo, and D. Towsley, “Multipath Live Streaming via TCP: Scheme, Performance and Benefits,”
ACM Transactions on Multimedia Computing, Communications, and Applications” (TOMM), vol. 5, no. 3, p. 25, 2009
115 M. Bacco, T. De Cola, G. Giambene, and A. Gotta, “Advances on Elastic Traffic via M2M Satellite User Terminals,”
in2015 International Symposium on Wireless Communication Systems (ISWCS). IEEE, 2015, pp. 226–230
116 C. Raiciu, D. Niculescu, M. Bagnulo, and M. J. Handley, “Opportunistic Mobility with Multipath TCP,” in Proceedings of
the sixth international workshop on MobiArch. ACM, 2011, pp. 7–12
117 G. Giambene, D. K. Luong, V. A. Le, T. de Cola, and M. Muham-mad, “Transport Layer Performance Combining
Multipath and Network Coding in Mobile Satellite Networks,” International Journal of Satellite Communications and
Networking, vol. 35, no. 6, pp. 583–603, 2017

TEACHING D2.1 ICT-01-2019/№ 871385

TEACHING - 71 - January, 2020

6 Conclusions

TEACHING Work Package 2 is aimed at designing and developing the distributed computing
and communication platform that support the execution of TEACHING and its use cases. We
refer to such platform as the High-Performance Computing and Communication Infrastructure
(HPC2I). During the first year of the project, the WP had four tasks active: T2.1 Design of
distributed computing orchestration platform for CPSoS, T2.2 – High-level Efficient
exploitation of multi/many-core CPUs, GPUs and FPGAs, T2.3 – High Performance
Processing and Management of Data Streams, and T2.4 – Sensors, IoT and wearable devices
in CPSoS: management, tuning and orchestration.

In this document we frame the WP2 activities in the scientific and technological state-of-the-
art. We then relied on such analysis to conduct the WP activities. This deliverable also presents
a preliminary analysis of the TEACHING HPC2I requirements and, starting from those ones, a
preliminary conceptual design of the HPC2I architecture. Finally, the document reports some
relevant technologies that are candidate to be exploited in the context of WP activities.

Following the planned project’s workplan, the results of the work conducted in WP2 and
described in this deliverable, along with that of the other technical WPs, will drive the efforts
on the core technology building during Year 2.

The project activities currently running will be complemented by the work on the tasks starting
at M13: Task T2.5 – Efficient and decentralized information exchange within single CPSoS
and across different CPSoSs, T2.6 – Seamless application deployment in Cloud and Edge
resources for the distributed provisioning of computing capacity and T2.7 - Silicon-born
dependable AI.

The joint effort of the many WP activities will result in the integrated mockup of the HPC2I
system in D2.2, thus contributing to the project’s milestone MS2 on the first integrated setup
of the TEACHING platform to be delivered at M20.

