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Executive Summary 

The objective of this deliverable is to delineate the TEACHING CPSoS and define the scope 

of the research and development work of the TEACHING project. It focuses on the definition 

of the high-level concepts thus guiding the more technical-oriented work packages. The report 

provides a general, theoretic definition of the TEACHING CPSoS and the applications that it 

can support. It elicits the requirements and resorts to the literature for the identification and 

analysis of the relevant research and technical challenges. This analysis is then used for the 

definition of the baseline tools and technologies. The latter is achieved through conducting a 

survey of existing and well-established platforms. This output was important so as to allow the 

rest of the work packages to delve into the details of their tasks. Finally, in order to further 

facilitate the bridging of the TEACHING CPSoS with the more technical work, we provide a 

conceptual view of its architecture. 
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1 Introduction 

This document provides a thorough account of the work and the results followed during the 

course of Task 1.1: Requirement identification of the TEACHING project (T1.1). This Task was 

active during the period 01/01/2020-31/12/2020 and the work was conducted by the following 

partners: HUA (leader), TUG, AVL, MM, I&M, TRT, IFAG. 

This work was complemented with the work in Task 1.3: Human-centered design (T1.3). This 

task was active durine the period 01/01/2020-31/12/2020 and the work was conducted by the 

following partners: UNIPI (leader), CNR and IFAG  

The objectives of the work in T1.1 were to: 

• record the requirements of the TEACHING CPSoS 

• provide a detailed analysis of the state of the art aimed at tracking the technological 

trends in the scope of the TEACHING project 

• analyse the market of CPS with the objective of identifying suitable hardware platforms, 

sensors kits and technologies and available software tools. 

whereas the objective of T1.3 was to study the interfacing between the TEACHING technology 

and systems and the users, thus, becoming a subset of the overall T1.1 objectives that 

emphasized on Human Centered Design (HCD). 

Bringing about those objectives provides a guidance to the Research and Development (R&D) 

work of the project in its effort to deliver its promised outcomes. Those outcomes are defined 

in the TEACHING project goal as defined in the Description of Action (ref appendix to the 

Grant Agreement):  

The goal of the TEACHING project is to design a computing platform and the associated 

software toolkit supporting the development and deployment of autonomous, adaptive and 

dependable CPSoS applications, allowing them to exploit a sustainable human feedback to 

drive, optimize and personalize the provisioning of their services. 

Based on that we distinguish three main artefacts: 

• A computing platfom 

• A development and deployment software toolkit  

• Autonomous, adaptive and dependable CPSoS applications 

For the remaining of the document we will refer to the computing platform and the software 

toolkit collectively as the TEACHING Platform which is meant to support the development 

and deployment of the CPSoS applications. 

In order to bring about the T1.1 objectives, the participating partners worked in close 

collaboration with work packages (WP) 2-5 in order to understand what are the use cases of 

interest, the relevant technology trends as well as engineering methodologies. 

All those WPs provide a view of the project requirements deriving from a different perspective. 

WP2-4 aim mainly into providing the technical requirements and WP5 focus on the definition 

of the tangible use case requirements. WP1 focused on the definition of the TEACHING CPSoS 

(system) requirements that are linked with its implementation. Hence, the analysis conducted 

in this work, remains at a conceptual level and its main aim was to provide a guidance to the 

rest of the WPs that delve into the details of those concepts. 

To convey the results of this work, this report starts with a theoretical definition of the 

TEACHING CPSoS (Section 2) and then delves into the details of the TEACHING CPSoS 
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Applications (Section 3). The latter is a central step in the identification of the requirements and 

the definition of the system actors and their roles. Focusing on the identified non functional 

requirements (NFR), the work proceeded with analysing the relevant state of the art approaches 

so as to better understand the research and technical challenges for the implementation of the 

TEACHING CPSoS (Section 4). Subsequently, the analysis went on to the hardware and 

software tools that are currently available that could meet the NFRs and as such, could form a 

baseline for the TEACHING Platform (Section 5). Leveraging on the functional and non-

function requirements, the approach move on a step further and started working in the definition 

of the TEACHING CPSoS conceptual architecture. This is of course, a subject of another 

deliverable (TEACHING Report D1.2: TEACHING CPSoS architecture and specifications), 

however, a preliminary version is already presented in Section 6. 

To simplify the reading of this document we provide the following table, explaining what are 

the objectives of each of the section. 

Table 1: Section map 

Section Title Objective/Outcome 

Section 2 TEACHING CPSoS Provide an umbrella definition of the TEACHING CPSoS 

Section 3 

CPSoS applications 

and system 

requirements 

Identify the functional and non-functional requirements and the 

key actors of the TEACHING CPSoS 

Section 4 

Research and 

technical challenges 

Identify the research and technical challenges for meeting the 

NFRs defined previously in a CPS context 

Section 5 

Baseline technologies 

and tools 

Examine the existing, COTS tools and technologies upon 

which TEACHING could rely in order to meet the identified 

requirements 

Section 6 

TEACHING 

Platform architecture 

Leverage the identified requirements to provide a preliminary 

version of the TEACHING Platform architecture 

Section 7 Conclusions Summarize findings and present future work 

 

1.1 Relationship with other deliverables 

There is a group of related deliverables, i.e. D1.1, D2.1, D3.1, D4.1 and D5.1 (Table 2), all of 

which serve as a mean of milestone MS1 verification. That is the first project milestone, entitled 

Release of the TEACHING design (requirements, specification and architecture).  
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Figure 1: Depiction of the IIRA Viewpoints from 1 and mapping of focus of  TEACHING Deliverables MS1  

The mapping of the viewpoints of the technical WPs, as well as the integration intentions of the 

TEACHING technology bricks in domain use-cases is depicted in Figure 1.  

 

Table 2: Deliverable grouping for verification of TEACHING Milestone 1 

D1.1 Report on TEACHING related technologies SoA and derived CPSoS requirements  

D2.1 State-of-the-art analysis and preliminary requirement specifications for the 

computing and communication platform 

D3.1 Initial Report on Engineering Methods and Architecture Patterns of Dependable 

CPSoS 

D4.1 Initial report on the AIaaS system 

D5.1 Initial use case specifications 

 

 

 

1 https://iiot-world.com/industrial-iot/connected-industry/iic-industrial-iot-reference-architecture/  

D5.1 

D3.1

D1.1 

D2.1 D4.1 

https://iiot-world.com/industrial-iot/connected-industry/iic-industrial-iot-reference-architecture/
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2 TEACHING CPSoS 

In order to be able to define the TEACHING CPSoS, we need to establish a commonly accepted 

definition of Cyber-Physical Systems. The literature includes a large number of such definitions 

yet there are a few that accurately express the TEACHING concepts. Such is the one from 

Platzer [1] who proposes the following:  

Cyber-physical systems combine cyber capabilities with physical capabilities to solve problems 

that neither part could solve alone. Cars, aircraft, and robots are prime examples, because they 

move physically in space in a way that is determined by discrete computerized control 

algorithms that adjust the actuators (e.g., brakes) based on sensor readings of the physical 

state.  

Similarly, the Ptolemy Project website2, maintained by the EECS department at Bekeley, states: 

CPS integrates the dynamics of the physical processes with those of the software and 

networking, providing abstractions and modeling, design, and analysis techniques for the 

integrated whole. Computer science, as rooted in the Turing-Church notion of computability, 

abstracts away core physical properties, particularly the passage of time, that are required to 

include the dynamics of the physical world in the domain of discourse. 

We employ these definitions in order to define the TEACHING CPSoS. The rationale is 

developed in what follows.  

Assume a cyber-physical system (CPS) whose behavior is regulated by a feedback control loop. 

This system can be a vehicle or an airplane and its behavior ranges from simple navigation to 

emergency maneuvers. This system is stable/dependable in the sense that it is achieves its 

objectives which are dictated by concrete policies, under a wide range of conditions. 

TEACHING introduces a new objective to the control loop, through the integration of a new, 

potentially undependable system. This system brings along a new array of sensors for 

monitoring its state, different than then ones that the original CPS is using. The new integrated 

system of systems (SoS) extends the original CPS and it remains a CPS itself. We will refer to 

it as the TEACHING CPSoS. As a CPS, it needs to maintain the properties of CPSs.  

 

2 https://ptolemy.berkeley.edu/index.htm 
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3 CPSoS applications and system requirements 

Α number of partners in the project consortium represent the TEACHING CPSoS end users. 

Those partners have already provided a description of two use cases that once implemented, 

will add value to their business endeavors. Analyzing the use cases and scenarios that revolve 

around the use of the TEACHING CPSoS is a typical way to elicit system requirements. 

The use cases revolve around the domains of autonomous navigation of vehicles and aircrafts. 

Their details along with some domain-specific use case scenarios can be found in the 

TEACHING Report D5.1: Initial use case specifications. The particular user requirements are 

listed in the Project requirements document release 1.0 in the form of a jointly edited, living 

document for tracking and evaluating progress but also to facilitate change control. In T1.1 we 

depart from the definitions provided in D5.1 and work on a higher level of abstraction since we 

are interested to define the TEACHING CPSoS applications. The implementation of those 

applications will serve as a proof of concept for the underlying technology that TEACHING is 

developing, i.e. the TEACHING CPSoS. 

Towards that end, we start with the identification of the TEACHING CPSoS actors and their 

roles (Section 3.1) before we provide the overview of those CPSoS applications and the 

associated high-level functional and non-functional requirements for the TEACHING CPSoS 

(Sections 3.2 and 3.3). 

3.1 Actors 

We employ the TEACHING goal statement that introduces the concept of a platform for 

development and deployment. The latter implies that there is an owner and a user of the 

platform. Furthermore, we distinguish between the actors with a business-oriented role and their 

agents, i.e. actors with a technical role.  

3.1.1 Business roles 

3.1.1.1 Platform Provider 

The Platform Provider refers to the entity that owns and maintains the TEACHING Platform. 

This entity must have a business incentive to do so. Such incentive may be domain-specific, 

e.g. a vendor installing the TEACHING Platform along with a TEACHING application in 

vehicles. An alternative option would be for the vendor to provide a general-purpose 

TEACHING Platform allowing other business entities to develop and deploy their applications 

on top of it. Such a business entity is referred to as “application provider”. 

3.1.1.2 Application Provider 

The Application Provider is a business entity that owns an application that can host an instance 

of the TEACHING Platform. This actor possible pays a fee to the Platform Provider in return 

for the use of the Platform. 

3.1.2 Agents 

3.1.2.1 Platform administrator 

This is the Platform Provider’s agent, i.e. a person or group of people that perform operations 

related to the configuration, upkeep and reliable operation of the TEACHING Platform. 

https://unipiit.sharepoint.com/:x:/r/sites/TEACHING/Shared%20Documents/Requirements_project/Teaching_requirements_Release1.0_20201222.xlsx?d=w4dd4dacd656b46eab1087f5ed643d678&csf=1&web=1&e=e3AJew
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3.1.2.2 Application Developer 

This is the Application Provider’s agent, i.e. a person or group of people that can deploy and 

possibly develop the application in the TEACHING Platform. 

3.2 Functional requirements 

In this section we introduce the two use cases in order to identify the high-level system 

functional requirements. To achieve that, we parse the narrative pertaining to the main scenarios 

of the use cases. 

3.2.1 Use case #1: Automotive 

The developer wants to implement an application that performs online learning based on human 

feedback so as to feed a vehicle’s Advanced Driver-Assistance System (ADAS) and have it 

adapt to the comfort levels of the passengers (Figure 2). The latter is monitored through a set 

of sensors and their input is “translated” to metrics that quantify the passengers’ stress levels 

by a model. This information is aggregated with situational awareness data (environment and 

vehicle status) in another model that delivers an adjustment towards the ADAS that is fit to the 

passenger’s preferences. 

 

Figure 2: Automotive CPSoS Application 

In such an application we recognize the following high-level functional requirements: A 

computing platform and software toolkit that integrates with the onboard ADAS and interacts 

with it (FR1.1). This system must be able to communicate with the wearable sensors (FR1.2) 

and the web (FR1.3). The system must allow the execution of software directly or in the form 

of container images (FR1.4). It should also be able to execute machine/deep learning algorithms 

for training (FR1.5) or inference (FR1.6). Finally, it must be able to offload tasks at the edge 

nodes and generally enable an interplay between local and remote resources (FR1.7). 

3.2.2 Use case #2: Avionics 

The developer wants to develop an application that implements and executes an anomaly 

detection DL algorithm so as to detect high stress levels on the hardware on top of which the 
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software of the Flight Management System (FMS) of an aircraft is executed (Figure 3). The 

application must also provide mitigation proposals to the pilot. The application is comprised of 

a set of probes that monitor the hardware that runs the FMS. The monitoring data are aggregated 

and summarized in a stress levels metric. This metric, along with the onboard sensors are then 

processed with the intention to identify anomalies (anomaly detection). Potential anomalous 

events are then reported to the pilot, along with mitigation plans. 

 

Figure 3: Avionics CPSoS Application 

In such an application we recognize the following high-level functional requirements: A 

computing platform and software toolkit that integrates with the onboard FMS and retrieve data 

from its monitoring probes (FR2.1). The system must allow the execution of software directly 

or in the form of container images (FR2.2). It should also be able to execute machine/deep 

learning algorithms for training (FR2.3) or inference (FR2.4). It must also be able to 

communicate the results of its processing to the human pilot (FR2.5). Finally, it must be able 

to offload tasks at the edge nodes and generally enable an interplay between local and remote 

resources (FR2.6). 

3.3 Non Functional Requirements 

Requirements’ analysis dictates the identification of the non-functional requirements (NFR). 

Unlike their functional equivalents, it is safer to elicit NFRs through a more general analysis 

rather than the parsing of the use case scenarios. It is often the case that NFRs are considered 

to be “obvious” and may escape the use case scenarios analysis. In many cases, however, there 

is a fixed list of NFRs that pertain to the development of a system. The system designers and 

developers select a subset of those, based on granularity level of the analysis and the desired 

emphasis of the system.  

Following this rationale, we resort to the identification of a specific number of NFRs as those 

are explicitly stated in the scope of the project as phrased in the Description of Action (ref Grant 

Agreement Appendix). Of course, the number of NFRs applied to CPSs is quite extended and 

they are conveniently illustrated in the CPS concept map presented in Figure 4. 
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Notwithstanding, the definitions and hierarchy of each NFR varies depending on the viewpoint 

allowing much room for debate. 

 

Figure 4: CPS concept map (source: Ptolemy Project website3) 

Among the superset of properties that define a CPS as presented in Figure 4, TEACHING 

focuses on: adaptability (NFR1), security (NFR2), dependability (decomposed to safety and 

reliability) (NFR3), privacy (NFR4), acceptability (NFR5) and energy efficiency (NFR6). 

Those are better explained in what follows. 

• Adaptability: CPS systems are typically closed-loop systems, where sensors make 

measurements of physical processes, the measurements are processed in the cyber 

subsystems, which then drive actuators that affect the physical processes. The control 

strategies implemented in the cyber subsystems need to be adaptive (responding to 

changing conditions) and predictive (anticipating changes in the physical processes). 

 

3 https://ptolemy.berkeley.edu/projects/cps/ 
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• Security: The overarching goal of cybersecurity is to build trust in systems. 

• Dependability.Safety: The goal of safety is to assure that the system will not misbehave 

in a manner that transitions the system to hazardous states and, therefore, is susceptible 

to causing losses in general and accidents in particular. 

• Dependability.Reliability: In the context of CPS, reliability is the ability of a system 

to continue operating satisfactorily when stressed by unexpected inputs, subsystem 

failures, or environmental conditions or inputs that are outside the specified operating 

range. Fault tolerance, fault detection, and adaptation are all techniques the promote 

resilience. 

• Privacy: In the context of CPS, privacy is the problem of protecting information about 

humans from unauthorized access by other humans or machines. 

• Acceptability (human-centric design perspective): Many cyber-physical systems 

include humans as an integral component. Humans are very difficult to model, so 

understanding and validating such systems becomes particularly challenging. 

• Energy Efficiency: Most of the embedded platforms that perform inference have 

stringent energy consumption, compute and memory cost limitations; efficient 

processing has thus become of prime importance under these constraints. 

The reason for emphasizing on those NFRs originates to the initial analysis on the challenges 

that the TEACHING project was set to tackle. Given this, T1.1 along with T1.3 focus on the 

analysis of the relevant non-functional requirements (NFR) of the CPSoS. This analysis 

included the review of the technologies and tools that are considered to be the state-of-the-art 

in CPS when they are to deal with the identified NFRs. This review is presented in the following 

Section whereas Section 5 presents the platforms that are meant to meet those requirements. 
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4 Research and technological challenges 

In what follows we provide an account of the R&D challenges that we need to deal with in 

order to meet the NFRs identified as important for the TEACHING CPSoS in Section 3.3. For 

that reason, we conducted an analysis of the state of the art for each of the NFRs. This literature 

survey was important in order for the project partners to update their knowledge bases, 

communicate their domain knowledge to the consortium and establish the research foundation 

upon which TEACHING will build. 

4.1 Adaptability  

In principle, the TEACHING CPSoS concept aims at augmenting the context that the initial 

control loop-based system is trying to control by adding more objectives to the controller and a 

new array of sensors to assess its performance4. Essentially, the result of the integration of the 

dependable/undependable systems results in a new system that bears an optimized controller. 

The key characteristic of this new system is that the introduction of the new objectives comes 

with a great deal of uncertainty. The presence of the human factor is anticipated as the main 

source of such uncertainty. The range of the required operations of the new system in order to 

meet human-related objectives varies greatly. 

This observation leads us to seek guidance for the design of this kind of systems to the domain 

of Adaptive Control. 

Definition5: Adaptive control is the control method used by a controller which must adapt to a 

controlled system with parameters which vary or are initially uncertain. For example, as an 

aircraft flies, its mass will slowly decrease as a result of fuel consumption; a control law is 

needed that adapts itself to such changing conditions. Adaptive control is different from robust 

control in that it does not need a priori information about the bounds on these uncertain or time-

varying parameters; robust control guarantees that if the changes are within given bounds the 

control law need not be changed, while adaptive control is concerned with control law changing 

itself. 

Even though control engineering as well as feedback found in nature are not targeting software 

systems, mining the rich experiences of these fields and applying principles and findings to 

software-intensive adaptive systems is a most worthwhile and promising avenue of research for 

self-adaptive systems [2]. 

Systems enabled with self-adaptive capabilities continuously sense their environment, analyze 

the need for changing the way they operate, as well as plan, execute and verify adaptation 

strategies fully or semi automatically. On the one hand, the goal of software evolution activities 

is to extend the lifespan of software systems by modifying them as demanded by changing real-

world situations. On the other hand, control-based mechanisms, enabled through self-

adaptation, provide the means to implement these modifications dynamically and reliably while 

the system executes [3]. 

Hence the question is to determine the equations that govern the dynamic behavior of the new 

system. 

 

4 Another way to view the problem, is that in a system with multiple, concurrent control loops (Multiple Input Multiple 

Output-MIMO), we need to add one more, but one that it is not easy to model. At the same time, we need to change the 

overall SoS objective function. 

5 https://en.wikipedia.org/wiki/Adaptive_control  

https://en.wikipedia.org/wiki/Adaptive_control
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4.1.1 System identification 

In control theory the process of determining the model/equations that govern the dynamic 

behavior of the new system is referred to as “system identification” and a well-established 

reference model for it is the Model Identification Adaptive Control (MIAC). 

In MIAC (Figure 5), the reference model that allows parameter estimation is identified or 

inferred at runtime using system identification methods, i.e., using the control input and 

measured output to identify the reference model. Then, the new model parameters are calculated 

and sent to the adjustment mechanism which calculates the parameters that will modify the 

controller. 

 

Figure 5: Model Identification Adaptive Control (MIAC) 

Note that the notion of “model” in control theory adheres to the definition of “white box model” 

that is commonly used in the field of computational intelligence. Based on the latter, process 

control methods were proposed and commonly used with white box models. 

White box models describe a system from first principles, e.g., a model for a physical process 

that consists of Newton equations. However, in cases such as the one we are studying, such 

models are overly complicated or even impossible to obtain due to the complex nature of many 

systems and processes (natural or artificial). A much more common approach is therefore to 

start from partial knowledge of the behavior of the system and its external influences (inputs), 

and try to determine a mathematical relation between inputs and outputs without going into the 

details of what is actually happening inside the system [4]. 

TEACHING considers the MIAC reference model, extended by the use of ML approaches to 

approximate the reference model (or conduct the system identification in the control theory 

terminology) as an appropriate approach for its purposes. 

4.1.2 Model Predictive Control 

Another option to be considered is Model Predictive Control (MPC). In its basic form, MPC 

(Figure 6) consists of the following two steps executed repeatedly on-line. First solve an 



TEACHING D1.1                                                                                                      ICT-01-2019/№ 871385 

TEACHING - 21 - December, 2020 

optimization problem to determine over a finite time horizon the open-loop optimal control 

input trajectory with respect to a certain performance criterion. Then apply the first part of it to 

the system to be controlled and repeat the whole procedure to achieve a desired closed-loop 

behavior. 

 

Figure 6: Model-based Predictive Controller diagram [Source: [5]]. 

The numerical effort of solving this optimization problem on-line can be prohibitive in fast or 

large scale applications. Hence, a large number of results aiming at alleviating this obstacle has 

been presented in the literature. Therein, the online optimization task is simplified or even 

(partly) avoided by shifting some of the computational effort off-line. Some of these results are 

based on machine learning techniques.6 

What is of interest, is that MPC seems an appropriate choice for Multiple Input Multiple Output 

(MIMO) control systems. TEACHING focuses on such systems, where multiple controllers are 

manipulating the variables of different systems/processes, each of which provides a measurable 

output [6]. 

The premise upon TEACHING would be building in this case, is that it can approximate 

adaptive MPC control with reinforcement learning algorithms while taking all appropriate 

measures to deal with stability, feasibility, robustness, and constraint handling. Table 3 presents 

how MPC and Reinforcement Learning can complement one another. 

Table 3: Properties of Model Predictive Control and Reinforcement Learning (Source: [7]) 

 

4.2 Dependability and Security 

For making dependability more measurable, Aviziensis et al. [8] define dependability as the 

ability of a system to avoid service failures that are more frequent or more severe than 

acceptable. This definition has overlaps with that of Security, leading in an intertwined 

 

6 https://ipvs.informatik.uni-stuttgart.de/mlr/colloquia/dipl-ing-gregor-goebel-simplifying-model-predictive-control-

algorithms-via-machine-learning-techniques/ 
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perspective when we refer to CPS systems. Figure 7shows the overview of the attributes, threats 

and means to attain dependability and security.  

 

Figure 7: Attributes, threats, and means to attain dependability and security 

Based on [8], the dependability and security attributes can be summarized as: 

• Security.Integrity - "absence of improper system alterations. Includes both intentional 

and unintentional interference in the system. 

• Security.Availability - "readiness for correct service. This attribute is often expressed 

as a function of time and represents the probability of correct service at a given time.   

• Security.Confidentiality - the security principle that controls access to information. It 

is designed to ensure the wrong people cannot gain access to sensitive information while 

ensuring the right people can access it. 

• Dependability.Maintainability - ability to undergo modifications and repairs. 

Maintainability indicates, how easy it is to restore a system which provides incorrect 

service to provide correct service again.  

• Dependability.Reliability - "continuity of correct service. This attribute represents the 

probability of a correct service being delivered during a specific time interval. 

• Dependability.Safety - "absence of catastrophic consequences on the user(s) and the 

environment.  

In what follows we analyze each of these properties in two main categories: security and 

dependability. 

4.3 Security  

Cyber-Physical systems, like any cyber system, are prone to security threats; such security 

threats can be the cause of damages to critical infrastructure, even the loss of human lives. 

Cyberattacks can happen on all layers of CPSs resulting in a multitude of potential threat 

models. Such threat include those directed to nodes which involve sensors and actuators threats 

causing data leakage, damage and security issues during massive data integration  or loss of 

user privacy, incorrect access control policies and inadequate security standards [9]. 
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There is, however, a plethora of solutions which are being developed to overcome such threats, 

since assuring cyber physical systems’ security has been an issue of utmost importance lately. 

The main issue concerning CPS security threats is that it is harder to detect and stop them 

compared to regular internet attacks. This is due to their heterogeneous nature, their reliance on 

private and sensitive data, performance of involved devices, their large-scale deployment due 

as well as the prolonged procedures many hackers follow. Another problem which makes CPS’s 

security harder to develop is that many real-life CPS are not open to scientific security search; 

in turn this fact delays the process of enforcing the security of such systems and makes it harder 

to detect possible breaches in the foreseeable future.  

In Figure 8, six (6) main security objectives are presented. Among them integrity, availability 

and confidentiality are utmost important properties of computer security and still applicable 

requirements also for the security of a CPS. In fact, CPS needs strong integrity and availability 

of infrastructure and information, especially considering the fact that CPS systems are deployed 

in remote and harsh environments and involve interactions between the massive entities which 

may span heterogeneous wireless networks. In what follows we provide a comprehensive 

overview on these three (3) security-relevant properties and as well as approaches to ensure 

these objectives. 

 

Figure 8: The Framework of Cyber Physical System Security [10] 

4.3.1 Integrity 

Integrity in the security of CPSs means that the system/device could be modified cannot be 

modified without authorization. Ensuring integrity in cyber physical systems is of great essence 

to the overall security of the system with regard to safeguarding the system’s correct and 

reliably operation. To have a high comprehensive level of integrity protection in a CPS, one 

should involve several axes; such axes include the component level of the system, which 

contains sensors/actuator devices, up to control and supervisory systems, planning and 

configuration management, and the system life cycle. In this way, one can detect integrity 

violations in a system level in a reliable manner through analyzing integrity measurements from 

many unique integrity sensors, which capture and analyze integrity measurement from the 

physical world, on the field level, and of control and supervisory systems [11]. The challenge 

to detecting integrity security breaches is through detecting any change of information inside 

the CPS, where the information changed can be with malicious or non-malicious intent. It is, 

however, important for a CPS to detect and notify when such changes occur, so the user would 

know that a possible attack is going to occur or occurring [12]. 

 

Many works in the scientific literature address integrity security breaches and how to avoid 

them [11], [13], [14]. Among the solutions, we mention SCADMAN[15], a system that 
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preserves the Control Behavior Integrity (CBI) of distributed cyberphysical systems. In this 

system, the effectiveness of the controllers is verified by observing the wide system’s 

behavior.  This allows SCADMAN to detect a wide range of attacks against controllers, like 

programmable logic controller (PLCs), including malware attacks, code-reuse and data-only 

attacks. SCADAMAN’s developers implement and evaluate the system based on a real-world 

water treatment testbed for research and training on ICS security. The test resulting from the 

deployment of SCADMAN show that it can detect a wide range of attacks including those that 

have previously been undetectable by typical state estimation techniques. Another team from 

the University of Santa Catarina in Brazil developed an architecture that protects the data 

integrity of any IoT-device in a system, including cyber physical systems, by utilizing 

blockchain features; their system is comprised of many layers, each one matched with their 

resource of data. To elaborate, the first layer of the system is comprised of sensors, gateways, 

and actuators; when combined together, they introduce the concept of Proof-of-Trust (PoT) 

which is an energy efficient, time-deterministic, and secure correspondence based on the 

Trustful Space-Time Protocol (TSTP). The upper levels are accountable for keeping 

information perseverance and integrity confirmation in semi-confided storage. The work 

additionally contains a performance assessment of a critical way of data to show that the design 

respect time-bounded activities requested by the sense-decide-actuate cycle of CPS. 

4.3.2 Availability 

Availability in a cyber physical system aims to always provide service even during system 

computing, control, and communication corruptions. High availability CPS needs the following 

characteristics: the physical layer can automatically deal with hardware failure, system updates, 

power load and other emergencies, to provide the correct service; information layer to deal with 

denial of service attacks, to provide the right information processing services. Availability 

malfunctions might happen due to a plethora of reasons including hardware and software 

failures, power cuts, system upgrade, and cyber-attacks, especially denial-of-service attacks. 

The system should strive at providing the required level of availability during a malfunction by 

maintaining redundant systems. An example of the importance of availability in a cyber 

physical system is in medical applications, that physicians acquire certain data in order to save 

a patient’s life. If the availability of the data is compromised due to a cyber-attack, the 

physicians may not be able to take the necessary measures to save lives [16]. S. Parvin et al. 

[17] have worked on the enhancement of availability of CPS and proposed a multi-cyber 

(computational unit) framework to improve the availability of CPS based on Markov model. 

They evaluated the effectiveness of the proposed framework in terms of availability via offering 

multiple cybers. In this way, the whole system is available even though other units are not 

functioning. Sanislav et al.[18] mentioned different research challenges to achieve 

dependability in cyber-physical hydropower systems (CPHS). They revealed that the system’s 

availability should be ensured with a view to achieving CPHS dependability. 

4.3.3 Confidentiality  

Confidentiality means that cyber physical systems should preserve authorized restrictions on 

information access, prevent the disclosure to unauthorized individuals or systems and protect 

personal privacy and proprietary information. The system should not allow the disclosure of 

any unauthorized personnel to the CPS; a viable way to ensure confidentiality is to investigate 

the problem of scheduling periodic messages with both time-critical and security-critical 

requirements and build a risk-based security profit model measuring the security quality of 

messages, trying to incorporate confidentiality improvement into message scheduling which 

expose critical messages to security threats, especially by confidentiality attacks [10].  An 
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example of confidentiality is when the medical reports of a certain patient are transported from 

the public health records system to a certain doctor or a clinic’s system; the system needs to 

have confidentiality through the encryption of the records by limiting the places where the 

reports show and by the restricting the access of people for the stored reports [11]. If there was 

any breach by persons who are not authorized to accessing the reports, there is a confidentiality 

breach.   

A way to protect a CPS from possible confidentiality breaches is through protecting the 

information between controllers, sensors and actuators from eavesdropping, which makes the 

assurance of confidentiality not enough if not combined with the prevention of infiltration by 

outsiders. Το address the security vulnerability of confidential violation, a group of researchers 

develop a basis for a CPS security model by composing simple building blocks into a more 

complex system, and then examine the information security specifically geared towards 

preserving the event confidentiality in CPS [10]. Furthermore, Laura Vegh et al.[19] has 

presented a solution for ensuring data confidentiality and security by combining some of the 

most common methods in the area of security – cryptography and steganography. Furthermore, 

they have used hierarchical access to information to ensure confidentiality and also increase the 

overall security of the cyber-physical system with robust, reliable and flexible features. A 

cryptographic service was also used by W. Jiang et al. [20] to implement confidentiality 

protection for messages delivered over distributed CPSs and deploy fault detection within 

confidential algorithm to resist fault injection attacks. 

Finally, hardware/software co-design techniques were also leveraged to accelerate 

confidentiality protection [21].  

4.3.4 CPS Security Approaches 

Compared to Internet attacks, attacks on CPS are more difficult to detect and prevent. To evade 

detection, hacks may apply multiple attack stages to gain the access to a CPS. The figure below 

illustrates the tree diagram of various attacks and threats on CPSs. 
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Figure 9. Attacks and Threats on CPSs 

In the open literature there have been observed several security approaches to address attacks 

on cyber physical system. The possible security attack on the CPS and the way to prevent it is 

shown in the table below [22]. Among the listed attacks the denial-of-service attack can be quite 

dangerous in the smart-car industry; an attacker can simply cause damage by stopping the car 

windows from closing after being open, they can also cause damage to the Anti-lock braking 

system (ABS) and stop the car from stopping altogether.  

Type of attack Security methods 

Eavesdropping Cryptosystem (symmetric and 

asymmetric) secure routing and 

anonymous routing. 

Compromised-key attack Cryptography, key transport protocol, key 

agreement protocols, and two-party key 

establishment protocols. 

Man-in-the-middle attack Message digest, digital signature, MAC, 

biometrics, and trusted platform module 

Denial of service attack network traffic monitoring, analysis and 

filtering, antispoofing, DoS source 

traceback, etc. 

 

Using Attack modeling techniques, the design of CPS can be planned ahead to ensure that the 

compromised components of the system are being protected from possible threats [23]. Many 

state-of-the-art techniques are now being developed to ensure security for CPSs throughout 

attack modeling and simulation building. For instance, a testbed for integrated evaluation of 
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large-scale CPS systems has been developed using a model-based integration approach and the 

IEEE High-Level Architecture (HLA) based distributed simulation software; it also involves a 

Hardware-in-the-loop simulator which helps secure the system against hardware attacks, which 

is important for the system to be complete in the hardware and software aspects [24]. F. 

Pasqualetti, et al. proposed an attack model, which generalizes the prototypical stealth, false 

data injection and replay attacks, to form a unified framework and advanced monitoring 

procedures for malfunction and attack detection. In another research work a novel method to 

model cyber-physical attacks in smart grid with hybrid attack graphs has been proposed.  Other 

frameworks developed for Attack modeling contain addresses combined (dependent) vector 

attacks and synchronization/localization issues. The framework identifies the cyber-physical 

features specified by the security policies that need to be protected and can be used for proving 

formally the security of cyber-physical systems [25].  

Regulatory Groups are also analysing the problem of cybersecurity for Cyber Physical Systems, 

like: 

• NIST in US with a proposed Framework for Cyber Physical Systems [26],  

• ENISA – European Union Agency – provided a set of Good Practices for IoT and Smart 

Infrastructures and a tool to support IoT operators and industries to conduct risk 

assessments [27].   

4.4 Dependability 

Dependability is a superordinate concept regrouping multiple system attributes, in various 

applications and domains different dependability attributes are highly prioritized and a key 

concept of modern embedded systems. Nevertheless, these different attributes, might lead to 

different targets or might lead to inconsistencies, if not appropriately covered. System 

dependability features have mutual impacts, similarities, and interdisciplinary values in 

common. System dependability attributes have a major impact on product development and 

product release as well as for company brand reputation.  

4.4.1 Robustness 

Robustness as a system property describes the degree to which a system is able to function 

correctly in the presence of disturbance, i.e. unforeseen or erroneous inputs. To study the effect 

of cascading failures and robustness in real social networks, H. Peng and his group [14] has 

constructed different CPS models consisting of interdependent physical-resources and 

computational-resource networks. They achieve promising results for various network builders 

to design a better network structure that can survive random network attacks. M. Rungger, et 

al. [15], introduce a notion of robustness termed input-output dynamical stability for cyber 

physical systems, which captures two intuitive aims of robustness: bounded disturbances have 

bounded effects and the consequences of a sporadic disturbance disappear over time.   

4.4.2 Maintainability 

In a cyber physical system, maintainability means that the system can be easily repaired after a 

malfunction, failure after a breach has occurred. We call a CPS maintainable if it is able to be 

repaired swiftly, with the minimum amount of expenses, and with no possibility of causing 

supplementary faults in the maintenance process. The best way to have a maintainable CPS is 

through rigorous monitoring and testing of the system’s components and identifying the weak 

links in order to repair or replace them with higher-quality ones [11].  
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4.4.3 Safety  

Available functional-safety standards tend to lead the development of safety-related systems 

towards fully dependent and closed systems in order to minimize the potential for fault 

propagation and limit complexity. However, the large number of intercommunicating nodes of 

CPSs limits the ordinary applicability of functional safety for the open environments of CPSs. 

CPSs require new approaches to real-time fault tolerance and reasoning about consequences of 

faults because the fault tolerance of CPSs cannot be solved solely as a software problem since 

these systems work on the tight coordination among hardware, software and physical elements. 

Dependability has to meet safety as main requirement in systems engineering. To achieve 

dependability, CPSs have to counter possible faults by fault prevention, fault tolerance, fault 

removal and fault forecasting methods. Dependability and especially fault prevention 

methodologies have much in common with systems engineering approach, while fault 

forecasting has strong ties to safety analysis. Fault tolerance is used to avoid service failures 

when some part of the system fails, which is essential for guaranteeing the reliability of safety-

related subsystems and limiting fault propagation. Fault removal is tightly coupled with the 

development process, and thus also with fault prevention. 

4.4.3.1 Safety requirements in the Automotive context 

Dependability case and safety case are systematic approaches that could be used to collect 

evidence for proving the dependability or safety of the system. In order to emphasize the 

importance of safety by system design in automotive, the definition of the Functional and TSC 

still remains an essential element as descripted in the ISO 26262. Whatever choice of the above 

safety methods on system design is made, that shall be justified according to the specification 

of technical safety requirements, as shown in the workflow at system level development shown 

in Figure 10. 

 

Figure 10: Specification of technical safety requirements Workflow 
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As a starting point for the risk determination according to the ISO 262626 a defined 

functionality including a first preliminary architecture shall be the basis. Therefore, the 

approach of the ISO PAS 21448 SOTIF can be used to support applying functional safety in 

accordance with the ISO 26262 – the creation of the item definition (see D5.1 - WP5). The item 

definition has to include a definition of the functions including their dependencies and 

interaction with the environment and other items/vehicles. Based on the item definition, a 

Hazard Analysis and Risk Assessment can then be carried out to find the root requirements or 

safety goals for the involved functions at vehicle level. Safety goals have to be clear and precise, 

do not contain technical details, but have to be implementable by technical means (e.g., avoid 

referring to non-measurable data).  ISO 26262 requires that at least one safety goal is assigned 

to each hazard rated as ASIL A, B, C or D – the Automotive Safety Integrity Level is a measure 

of necessary risk reduction related to prevention or mitigation of the hazardous events (Figure 

11). It is not necessary to define safety goals for hazards rated as “QM” or “no assignment”, 

but hazards rated with QM shall be addressed by at least one requirement. One safety goal can 

address several hazards and a hazard can be addressed by more than one safety goal.  

 

Figure 11: Safety Goal ASIL determination 

Once the architectural system element of item has been defined, the next technical step will be 

to develop the safety concept (Figure 12). In addition to allow a correct and consistent 

deployment of safety goals within the item in the different abstraction levels of it, the safety 

concept will allow to find the proper safety measures that are needed to avoid violation of safety 

goals. 

                                         

Figure 12: Safety Concept modelling with SysML 
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As mentioned above the Functional Safety Concept describes the safety measures that are 

needed to avoid violation of safety goals. It shall contain assumptions about necessary driver 

actions if needed to comply with at least one of the specified safety goals. It shall be available 

to start derivation of Technical Safety Requirements. These shall specify, if applicable, 

operations for: 

a. fault avoidance; 

b. fault detection and control of faults or the resulting malfunctioning behavior; 

c. transitioning to a safe state, and if applicable, from a safe state; 

d. fault tolerance; 

e. the degradation of the functionality in the presence of a fault and its interaction with f) 

or g); 

f. driver warnings needed to reduce the risk exposure time to an acceptable duration; 

g. driver warnings needed to increase the controllability by the driver (e.g. engine 

malfunction indicator lamp, ABS fault warning lamp); 

h. how timing requirements at the vehicle level are met, i.e. how the fault tolerant time 

interval shall be met by defining a fault handling time interval; and 

i. avoidance or mitigation of a hazardous event due to improper arbitration of multiple 

control requests generated simultaneously by different functions. 

If a safe state cannot be achieved within a defined fault tolerance time interval (FTTI), then a 

warning and degradation concept or strategy shall be specified.  

The Technical Safety Concept (TSC) is derived by the Functional Safety Concept. It contains 

the refinement of the functional safety requirements and their allocation to components of item. 

The TSC refines the technical solution described in the Functional Safety Concept. The 

traceability shall be given from the safety goal, derived on vehicle level to the safety 

mechanisms specified in the TSC. The allocation of the safety mechanisms to HW component 

or SW component shall be described in the TSC.  
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Figure 13: FSC and TSC modelling with SysML 
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There is also the case of potentially hazardous behaviour caused by the intended functionality 

or performance limitation of a system that is free from the faults addressed in the ISO26262 

This is common in systems which rely on sensing the external or internal environment. 

Examples of such limitations include: 

• The inability of the function to correctly comprehend the situation and operate safely; 

this also includes functions that use machine learning algorithms causing incorrect 

classification, incorrect measurements, incorrect tracking, misdetection, ghosts, 

incorrect target selection, incorrect kinematic estimation, etc; 

• Insufficient robustness of the function with respect to sensor input variations or diverse 

environmental conditions as well as occluded field of view of environmental sensors. 

The absence of unreasonable risk due to these potentially hazardous behaviours related to such 

limitations (including the human/machine interface) is defined as the safety of the intended 

functionality (SOTIF). Functional safety (addressed by the ISO26262) and SOTIF are distinct 

and complementary aspects of safety. SOTIF is to be applied to intended functionality where 

proper situational awareness is critical to safety, and where that situational awareness is derived 

from complex sensors and processing algorithms; especially emergency intervention systems 

and systems with levels of automation 1 to 5 on the OICA / SAE standard J3016 automation 

scales. Moreover, reasonably foreseeable misuse, which could lead directly to potentially 

hazardous system behaviour, is also considered as a possible condition that could directly 

trigger a SOTIF–related hazardous event. 

 

Figure 14: Links among hazard, triggering conditions and the system performance limitations 

The alignment of the SOTIF and ISO26262 is important to implement possible modifications 

to the system design at a sufficiently early stage. The beginning of the SOTIF development 

process keeps aligned with the Item definition and the Hazard Analysis and Risk Assessment 

of ISO26262 process. The Identification and Evaluation of Triggering conditions as initiator 

for a hazardous behaviour, considers system limitations and evaluates possible functional 

modification to reach an acceptable SOTIF risk according to the definition of Functional Safety 

Concept and TSC of ISO26262 processes. Verification and Validation of the SOTIF are always 

aligned with the corresponding ISO26262 activities on the right side of the V-model. Definition 

of the SOTIF V&V strategy is already compiled from information produced in the early stages 

of the SOTIF development. SOTIF Release and Functional Safety Assessment conclude the 

development process. 
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Figure 15: Interactions of Product Development activities between SOTIF and ISO26262 processes
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4.4.3.2 Safety requirements in the Avionic domain 

This section identifies the overall safety-related requirements from the avionics domain. We’ll 

first introduce the terms, and then focus on the reliability and timing aspects of avionics safety-

critical systems. 

To present the basics of timing, safety and reliability concepts in avionics, we use the following 

definitions from the field of fault-tolerant avionic software, as presented in [8], [28]. 

• An element is used in a general way, according to IEC61508 [29], to describe either 

hardware, software, or hardware/software combination or an entire system or 

subsystem. 

• The total state of a given element is the set of the following states: computation, 

communication, stored information, interconnection, and physical condition. The part 

of the element that is perceivable from the outside of the element is the external state; 

the remaining part is the internal state 

• A service delivered by an element is its observable behavior. The delivered service can 

therefore be defined as a sequence of the element’s external states. 

• A failure is a deviation between the delivered service of an element and the correct 

expected service of this element. It reflects the inability of an element to perform 

correctly its intended function within the specified performance requirements. A service 

failure means that some external states deviate from the correct service states. 

• An error happens when an internal state of an element deviates from its expected 

correct state.  An error can also cause a failure if the external state of the element is 

affected. However, most errors are captured before impacting the external state, not 

causing a failure. 

• A fault is defined as the cause of an error. It could either be a defect in the hardware 

components of the element, or an active bug in the element’s software. 

In the avionic domain, Reliability, is defined as the ability of an element to provide the correct 

service over a given period of time, or in short as the continuity of service. In error-prone 

systems it is the role of fault-tolerance mechanisms to prevent errors from producing failures 

and to assure reliability. Errors might be caused by different types of faults, amongst others by 

random hardware faults. Modeling random hardware faults with statistical error models 

facilitates reliability analysis, i.e., the determination of an element’s reliability analytically. 

While reliability has been originally applied as a measure to characterize behavior of an element 

in the value domain, Timing refers to the element’s behavior in the temporal domain.  Timing 

can include various properties, for example minimum, maximum or average latencies, 

computation and communication jitter, process activation patterns, deadlines and so on. In the 

temporal domain, an error occurs when detecting that the above-mentioned timing constraint 

will not be respected (such as a future deadline miss). Corrective actions usually include re-

scheduling actions like priority change of the task with endangered deadline. If such an error 

causes the late delivery of an element’s service, it also causes a failure. 

The role of Safety is slightly different. In very general terms safety is defined as the freedom 

of unacceptable risk [29]. More concrete approaches define safety as absence of catastrophic 

consequences on the user and the environment. Anyway, each of these definitions refers to 

some kind of non-tolerable events, generally called hazards. Hazards have to be identified at 

design time and avoided at runtime by corresponding safety measures. In safety-critical 

systems, if failures occur, the system safety functions must become active to make sure that 
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neither a hazard occurs (e.g., by transition to a dedicated state which provides degraded, but 

safe service) nor failures are propagated in an uncontrolled manner (e.g., using isolation 

mechanisms). 

Safety process in Avionics 
Both Reliability and Timing fault tolerance mechanisms deal with possible internal state 

deviation such as transient hardware fault, permanent hardware fault or missing an internal 

deadline. After detecting fault-induced errors, they are using correction mechanisms (e.g., CRC 

based fault correction, task redeployment, …) to fall back into correct service mode, trying not 

to affect the external state. Figure 16 presented below details at which level faults, errors and 

failures are dealt with in the safety process. 

 

Figure 16: Avionics safety process 

When a fault tolerance mechanism fails and the external state is impacted, it causes a failure 

implying a discontinuity of service. Safety measures then allow this failure not to propagate to 

the whole system and also that a hazard does not occur. Safety correction measures 

(reinitialization, reset, switch to degraded mode) are then taken so that the system could fall 

back into a safe state. The failing of safety correction measures will lead to some hazard and is 

usually not acceptable. 

Design Assurance Levels 
In the DO-178-B standard, safety levels are represented with Design Assurance Level (DAL) 

and are defined in terms of the impact and maximum probability of a failure on the flight. The 

safety levels range from DAL-A where the effect of a failure will lead to catastrophic 

consequences such as plane crash or loss of life, to DAL-E where the effect of a failure will 

have no impact on the plane such as impacting the on-flight video of the passengers. Safety 

levels are presented in Table 4 including the maximum allowed probability that such an event 

occurs. 

Table 4: Design Assurance Level in Avionics 

Level Severity Consequence 

Probability 

(per hour of 

flight) 

A Catatrophic Failure may cause a crash. Error or loss of critical 

function required to safely fly and land aircraft. 

<10-9 

B Hazardous Failure has a large negative impact on safety or 

performance, or reduces the ability of the crew to 

operate the aircraft due to physical distress or a higher 

workload, or causes serious or fatal injuries among the 

passengers. 

10-7 → 10-9 
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C Major Failure is significant but has a lesser impact than a 

Hazardous failure (for example, leads to passenger 

discomfort rather than injuries) or significantly 

increases crew workload. 

10-5 → 10-7 

D Minor Failure is noticeable, but has a lesser impact than a 

Major failure (for example, causing passenger 

inconvenience or a routine flight plan change) 

10-3 → 10-5 

E No Effect Failure has no impact on safety, aircraft operation, or 

crew workload. 

>10-3
 

 

Figure 17 provides some example of avionics systems with their respective design assurance 

levels. For the purpose of the TEACHING avionic use-case, we will consider the FMS 

application to be DAL-B, while the cyber black-box application to be DAL C/D. 

 

 

Figure 17: Design Assurance Level of avionic systems 

Spatial and Temporal Partitioning 
To allow several software application to run on the same system, the avionic industry heavily 

relies on strict partitioning following the ARINC 653 principles [30], as depicted in Figure 

18. The ARINC 653 (Avionics Application Standard Software Interface) software specification 

defines space and time partitioning in Safety-critical avionics real-time operating systems, 

allowing the industry to host multiple applications of different software levels in the same 

hardware in the context of Integrated Modular Avionics architectures [31]. 

 

Figure 18: ARINC partitioning 

Each application fits in a partition and has its own memory space, as well as a dedicated pre-

allocated scheduling time slot registered in the real time operating system, which also manages 

inter-process / inter-partition communication and error handling. 

Spatial partitioning ensures that it is not possible for an application to access the memory 

space (both code and data) of another application running in a different partition. Robust 

partitioning includes the protection of each partition memory space. This is usually provided 

by hardware memory protection mechanisms, i.e. MMU. It also requires a functional protection 

concerning the management of privilege levels, and restrictions to the execution of privileged 

instructions. 
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Temporal partitioning ensures that the activities of an application in one partition, including 

missing a deadline, do not affect the timing of the activities of another application in another 

partition. Ensuring temporal partitioning is a protection against timing anomalies. Temporal 

partitioning is actually a part of a more general property – the time composability. The latter 

property also requires the temporal independence between different segments of the same 

application, so that analysis can concentrate on the longest (worst-case) execution path and 

unpredictable hardware behavior, such as domino effects, can be avoided. 

4.4.3.3 Time-critical requirements in the Avionic domain 

In avionics, safety-critical applications are characterized by stringent real-time constraints, 

making time predictability a major concern with regards to the regulation standards [32], [33]. 

Furthermore, avionics real-time computing systems are characterized by the fact that the 

correctness of an operation or a task is not only defined by its functional correctness, but also 

by time-window during which those operations or tasks have to be executed. 

However, the recent shift to multi-core processor, and now the shift to heterogeneous 

architectures with AI accelerators is introducing new sources of time variations. As a 

consequence, the industry is facing a trade-off between performance and predictability [34], 

[35]. 

Worst-Case Execution Time (WCET) 
A common practice to guarantee the time predictability and its associated deadlines of a time-

critical application with single-core architecture is to determine the application Worst Case 

Execution Time (WCET). This WCET computation usually relies on analysis tools based on 

static program analysis tools [36], detailed hardware model, as well as measurement techniques 

through execution or simulation [37]. However, these analysis techniques and tools are not 

currently able to provide an exact computation of the WCET, only delivering an estimated 

upper bound, introducing some safety margins as depicted in Figure 19. 

 

Figure 19: Worst Case Execution Time & Safety Margins 

Despite all the improvements in the WCET estimation domain over the last decades, the 

overestimation remained mostly constant as the predictability of the architecture decreased 

[36]. This makes the use of WCET analysis tools difficult for real industrial programs running 

on multi-core Commercial off-the-shelf (COTS) architectures [34], [35]. 

Multi-core architectures and the issue of Timing Interference 
Several studies [38], [39] have shown that the order of magnitude on the variation of the 

maximum observed execution time while using the 8 cores of a multi-core architecture was 
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larger than the expected gain from using a multi-core (with up to a 20x on the worst case for 8 

cores). 

The source of this slowdown has been identified: On a multi-core processor, different pieces of 

software will be executed on different cores at the same time. Such different software will 

compete electronically to use the shared hardware resources of the processor architecture, 

causing concurrent accesses to the same hardware. 

 

Figure 20: Timing interference in multi-core systems 

On the hardware resources side, concurrent accesses are arbitrated, introducing inter-task or 

inter-application jitter defined as timing interference [38] as illustrated by Figure 20. These 

interference are breaking the timing isolation principles required by the standards [29], [32], 

[33] of avionics safety-critical software. A consequence for the industry is to decide between a 

trade-off in terms of performance versus time predictability [34], [35]. 

Mitigation techniques to deal with timing interference exist in the literature [40] as 

deterministic platform software (DPS), and each technique is proposing a different trade-off 

in terms of performance, time predictability, and maturity level with regards to the industrial 

practices of the avionic domain. 

4.4.3.4 Reliability 

As defined by Avizienis et al. [8], reliability describes the continuity of correct service. 

Reliability engineering focuses on the ability of a system to function without failure. Reliability 

is closely related to availability and often confused with availability or safety.  

While reliability engineering deals with the prediction, prevention and management of 

uncertainty and risks of failure of the system, safety focuses on minimizing the potential for 

fault propagation and limit harm to people and environment. Reliability engineering is 

concerned with overall minimisation of failures that could lead to losses. Therefore, reliability 

engineering is more closely related to Quality Engineering. Whereas safety engineering focuses 

on minimising failures that could lead to loss of life, injury, or damage to the environment. 

Reliability functions of components are defined as depicted in Figure 21and provide a 

probability indication that the component is working until time t.  
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Figure 21: Reliability function of a component 

In the context of industrial IoT systems, reliability can also be defined as the ability of the 

system to correctly deliver sensor data and actuation commands throughout a network, or as the 

ability to meet timing constraints in a changing environment. The ever-increasing demand for 

the highly dynamic reconfiguration of such systems pushes the demand for reliable connectivity 

and adaptation solutions. Therefore, in this context reliable systems are considered to be 

(runtime) adapting systems and systems that can maintain their functionality also in the 

presence of changing environment. 

4.5 Acceptability 

TEACHING research aims at filling the gap between AI and humans by means of a novel 

human-centred approached applied to the design and development of dependable AI. Human-

Machine interaction is a rapidly growing research topic. Thanks to the AI and Industry 4.0 hype, 

a lot of researchers started to realize that technology alone isn’t enough. In order to innovate 

processes, services and technology we need to build a usable technology that goes beyond the 

simple improvement of performance and increasing of available features. In order to do this, it 

is necessary to consider usability as a main requirement to be taken into consideration since the 

preliminary design phases. 

The application of Human-Machine Interaction Research to the design of new products and 

service is mainly based on two complementary methods: Human-Centered Design and Design 

thinking. 

Design Thinking is a problem-solving process that starts from the understanding and scoping 

of a clear problem and then focuses on how to solve it (Figure 22). 
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Figure 22: the Design Thinking process. (source: Design council) 

Discovery is the beginning of the process, which looks to understand the ‘problem’: The user 

and their environments, behaviours, tools they use and decision-making processes. It looks at 

the landscape somewhat broadly often through methods such as surveys, user diaries, 

observations or immersion. 

The idea is to really understand the user to build empathy. 

The “Define” phase is an opportunity to refine and narrow down ideas and to look at the main 

challenges the product/service may face. 

The final two stages of the Design Thinking process are “develop” — the ideation stage where 

design concepts are tested out — and “Deliver” — where the product is finalised and launched.  

The double diamond (Figure 22) isn’t the only representation of Design Thinking out there. 

Another alternative way of understanding the process is through Stanford Design School’s 

Design Thinking Bootleg (Figure 23). 
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Figure 23: The Stanford Design School’s Design Thinking Bootleg. Source: Medium7  

Human-centered design is an approach to problem-solving that has a focus on the people that 

you’re designing a product for. It starts by establishing who your user is and what their problem 

is and then ends by finding a solution that is tailored to them. 

The objective of Human-Centred Design (something referred to as “HCD”) is to help designers 

in producing an abundance of ideas. These preliminary ideas will feed the process moving into 

the building step and then sharing a prototype with the ideal customer and, eventually, putting 

the product or service to market. 

Human-centered design consists of three phases, shown in Figure 24. 

 

 

7 https://medium.com/@petrila3/bootcamp-bootleg-f7132a181db1 
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Figure 24: The Human Centered Design flow. (source: Medium8) 

During “inspiration”, designers focus on learning from the people you’re design for. To build 

empathy with them and better understand their needs. 

In the “Ideation” phase, it is important to bring order to what has been learnt. It begins by 

mapping out opportunities for design and prototype solutions to the problems uncovered in the 

previous phase. 

Finally comes “Implementation”. This is when the solution is built. Trusting the human-

centered nature of the design process the solution has an higher probability to be well accepted 

by the final users thus by the market. 

IDEO9 suggest that this mindset can be split into these actionable steps: 

• Observation: Learning about the end-user, through research 

• Ideation: Brainstorming a lot of ideas 

• Rapid Prototyping: Quickly building a low-fidelity prototype 

• User Feedback: Getting input from your end-user 

• Iteration: Iterating and fine-tuning the product and its design, whilst continuing to get 

user input. 

• Implementation: Test the idea out in the real-world 

Design Thinking and Human Centered Design methods are not mutually exclusive. The first is 

a project execution template that help in keeping the design focus centered on the user need. 

Human Centered Design is a design and thinking methods that can be applied iteratively to all 

the passes of Design Thinking in order to develop solution by keeping humans at the centered 

of each phase of the product design and development phases.  

 

8 https://medium.com/snapout/design-thinking-vs-human-centred-design-whats-the-difference-

9ef855f55223#:~:text=Design%20thinking%20looks%20at%20the,a%20particular%20product%20or%20service. 
9 http://ideo.com/ 
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In TEACHING, the Design Thinking method will be suggested to all the partner involved in 

the design and development of AI components as framework for the organization of the 

activities or at least as reference for the validation of the design process. Moreover, the Human 

Centered Design “forma-mentis” will be promoted among the consortium teams in order to 

guarantee a design process highly focused on users’ needs and requirements. 

4.6 Energy efficiency  

This analysis was conducted placing IFAG’s demonstrator at the center. All aspects of energy 

efficiency regarding this demonstrator can be optimized by analysing the following questions 

and adapt the structure due to the results of these key questions: 

• Are tasks executed which are not needed? Due to continuous improvements and 

extended functionality of products a lot of times obsolete modules are dragged along 

though not providing any surplus to the functioning of the CPS. 

• Can tasks be scheduled with lower frequency? To reduce the overall load of the 

hardware it is essential to determine the lowest frequency a task or module has to run or 

be updated by providing the intended functionality. A higher task frequency than the 

minimum will result in higher energy consumption.  

• Can the task be executed sufficiently successful with fewer resources? During the 

optimizations of applications, it is not only important to guarantee a high accuracy 

depending on your task, but also take into account if the needed outcome could also be 

achieved with less resources.  For image processing task for example that would 

correlate with the lowest resolution the application could be run with while achieving 

their goal. Or with on edge neural network setups a smaller number of nodes could lead 

to a less memory consuming application 

• Are overlaps in between tasks resulting in multiple processing? Especially for large 

CPSoS it is important to have a well-documented structure to prevent that functions 

partly overlap and thus not only lead to a larger program but also result in the same 

calculations being done multiple times, at different parts of the system, instead of storing 

and reusing the result, thus saving the energy of unnecessary repetitions of code.  

• Is there dedicated hardware optimized for the needed task? A lot of times it is not 

necessary to reinvent the wheel. Coming back to on edge neural network CPS for 

example, there are specialized chips that are highly optimized also with a focus on 

energy consumption, to run predesigned networks. 

• Does a less energy consuming platform satisfy the needs of the tasks? As the 

development of CPSoS are usually a iterative process it is also important to doublecheck 

if the overall system would fit on a hardware platform that might not be as powerful but 

sufficient for the task. Though also considering future developments that might ask for 

a more powerful system.  

• Are things modular and scalable to adapt to future requirements. Having a system that 

is highly modular makes sure that only the amount of actually needed hardware could 

be used. To give a more concrete example you could think of a sensor system detecting 

the stress level a person in a vehicle. Due to the different number of passengers the 

number of needed sensors would vary highly between a bus or a five-seater personal 

car. Thus, a modular system would give the chance to adjust exactly to each vehicle. 

Though, during the design of any scalable system it is important to consider the 

boundaries of scalability, due to for example, network interconnection limits. But 

usually, modularity speaks in favor of energy efficiency.  
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Apart from the earlier mentioned key questions that mainly focus on the software design point 

of view, there is plenty of research among which the work of [41] gives an insight of dealing 

with the topic of efficiency in embedded systems with a focus on hardware solutions. 

Some of those topics are especially interesting for the TEACHING approach and therefor will 

be explained in detail.  

Power consumption can be split in two parts. The static part that originates from leakage and 

the dynamic part that is produced due to the switching thus the calculation. There are different 

optimization methods for both parts.  

The reasons why focusing on energy efficiency is important are the following: 

• Limits due to battery capacity, 

• Reduce the heat generated by the system, 

• Overall cost reduction, 

• Ensure longevity, 

• Avoid overprovisioning of resources, 

• Meet performance requirements, 

• Miniaturization leads to smaller fractions on the chip that can run at full speed due to 

the power budged, 

• Global trends of the amount of edge devices, 

• Moral point of green computation. 

The techniques to save energy can be split in the following approaches: 

Dynamic voltage and frequency scaling (DVFS). 

If the system is running on a lower frequency it can be operated at a lower voltage which leads 

to less energy consumption. This way dynamic loads can be dealt with. Downside of this 

method is the decrease of performance and hence its increase in execution time, which might 

lead to missed deadlines. This method also requires hardware, which is supporting variable 

clock frequencies and voltages. The benefit of these methods is small due to an increase of 

leakage energy and multi-core processors structures. A vast amount of different algorithms how 

DVFS can be applied are given in [41]. 

Power mode management 

Save energy by setting the system in different modes that are implemented by design. In an idle 

state the system might select a low-power mode, waiting until it is actually needed to perform 

tasks in a normal mode. It is easier for the programmer to use than DVFS as no scheduling of 

tasks and surveillance of deadlines is required. Mittal in [41] mainly evaluates different 

algorithms to calculate break-even time calculations, at which a switching of power modes 

results in a beneficial energy saving.  

Microarchitectural techniques 

The microarchitectural techniques focus on different possibilities to reduce energy regarding 

memories or caches. All sorts of algorithms that compress data such that less physical memory 

is needed might result in energy savings if the energy reduction due to savings of memory 

exceeds the energy needed for the compression. Also, special buffer structures might lead to 

energy savings in read-/write-combining prefetching schemes. In case of dynamical usage of 

cache due to different programs or program phases the unused cache could be switched off, 

which leads to energy savings. Alternative memory types can also be less energy consumption 

but consumes more time.  
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Specialized hardware (GPUs, FPGAs, ASICs) 

General purpose processors are by nature designed to be able to execute all sorts of calculations. 

Unconventional cores are often optimized for a single task only and due to this specialization 

require less energy at a faster throughput. By combining different hardware types, the overall 

system could consume less energy. The major downside of the hardware accelerators is the 

need for parallelization and high peak power consumption. Also, the high specialization makes 

this approach beneficial for certain areas of application only. 
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5 Baseline technologies and tools 

Following the establishment of the TEACHING R&D work for meeting the NFRs, we also 

present a survey on the tools and technologies that are readily available and that could form the 

baseline of the TEACHING Platform. We focused on the hardware platform upon which 

TEACHING could build its platform. 

Recall the list of high-level functional requirements from Section 3.2: 

Table 5: List of functional requirements 

ID Title 

FR1.1 Integrate with the onboard ADAS and interact with it  

FR1.2 Communicate with the wearable sensors  

FR1.3 Communicate with the web  

FR1.4 Execution of software directly or in the form of container images  

FR1.5 Execute machine/deep learning algorithms for training  

FR1.6 Execute machine/deep learning algorithms for inference  

FR1.7 

Offload tasks at the edge nodes and generally enable an interplay between 

local and remote resources  

FR2.1 Integrate with the onboard FMS and retrieve data from its monitoring probes  

FR2.2 

The system must allow the execution of software directly or in the form of 

container images  

FR2.3 Execute machine/deep learning algorithms for training  

FR2.4 Execute machine/deep learning algorithms for inference  

FR2.5 

It must also be able to communicate the results of its processing to the human 

pilot  

 

The implication of those requirements (Table 5) is that the TEACHING CPSoS is an embedded 

computing platform that may connect to other suchlike devices or be able to execute 

concurrently the TEACHING applications and dependable systems like the ADAS or the FMS 

(FR1.1, 2.1). The computing platform must be able to communicate with sensors and the web, 

i.e. implement standard communication protocols (FR1.2, 1.3, 2.1) and it must be able to 

support containerization (FR1.4, 2.2). The platform must also be able to support ML/DL 

training, perhaps through the appropriate software tools and a GPU (FR1.5, 2.3) and inference 

(FR1.6, 2.4). Furthermore, an execution management environment must exist that orchestrate 

underlying resources (FR1.7). Finally, some libraries for human-machine interaction must be 

provided (FR2.5). 

Following this analysis, we present an overview of the COTS hardware platforms (Section 

5.1), sensors (Section 5.2) and software tools (Section 5.3) that fit the above mentioned, 

highlighted criteria. For each of those we also present the tradeoffs it achieves in meeting the 

NFRs. 

5.1 Hardware platforms 

In this section, some of these platforms available on the market for the needs of the TEACHING 

CPSoS applications are listed and described. 
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5.1.1 Nvidia Jeston Nano 

Nvidia is a big player in the GPU market and recently moved to the AI field where high 

parallelism brings increased performances. The Jeston Nano is a small platform for prototyping 

IoT applications that include AI. It is a Quad-core ARM Cortex-A57 MPCore processor but the 

strong point is in its NVIDIA Maxwell architecture with 128 NVIDIA CUDA® cores.  

It is not built for reliable and safe applications, but more as a developing kit for research and 

prototypes. 

5.1.2 Nvidia Drive AGX Pegasus 

This is the top-level product from Nvidia, specifically targeting the L4 and L5 autonomous 

vehicle functions. It has two Xavier SoCs and two discrete NVIDIA Turing™ GPU. The 

platform is designed following safety standards and has some redundancy available since it has 

two SoCs and two GPUs. 

The strong point of this platform is for sure the computing power available. The drawback is a 

very large power consumption that can reach 300W and a large cost [42]. 

5.1.3 Raspberry PI 4 

The Raspberry Pi is a popular Single Board PC popular in the hobbyist community. It has a 

very large user base and has a large amount of available software. The downside is that targets 

the consumer market, so it does not have safety features and has no powerful AI accelerator. 

5.1.4 Zynq Ultrascale+ 

While not a proper platform, this SoC has many benefits that may be useful for the project. It 

is an SoC with 4 ARM cores, 2 Cortex R5 cores, and programmable logic, which can deploy 

an AI accelerator with high performance and low power consumption. 

5.1.5 I&M SDF Platform 

In past projects, I&M developed a platform for Sensor Fusion and Autonomous Driving 

applications. Being developed with safety features in mind, it relies on two different processors: 

one is the ASIL D Aurix processor and the other one is high-performance SoC. The platform 

has been developed as a System On Module (SoM) hosting the SoC and a carrier board hosting 

the Aurix. I&M developed a SoM featuring a i.MX8 Quad Max, that is a SoC from NXP 

targeting infotainment applications.  

The SoM and the carrier are designed so that they both follow the SMARC standard from 

SGET, in this way it is possible to swap the SoM with the i.MX8 with another one. For instance, 

a SoM with an Ultrascale Zynq+ MPSoC can be used, delivering both Cortex-A cores and 

programmable hardware that can be used for NN acceleration. 
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Figure 25: Carrier Board components 

The carrier board (Figure 25) has several interface, from CAN to LIN and Automotive Ethernet 

that rely on two Ethernet switches that bridge the two processors while expanding the number 

of external ports.  

The Aurix processor, with lockstep cores,  together with its power supply TLF35584 can 

guarantee the ASIL D safety level. The TLF35584 acts as a watchdog for the Aurix. Moreover, 

the Aurix can check the status and healthiness of the system, including the other processor. 

5.1.6 ARMv8-based NXP iMX8 Quad Max 

While not directly embedding a custom AI accelerator, the heterogeneity from the ATM 

bigLITTLE technology provides the SoC with different compromise in terms of performance 

over power consumption ratios. 

For instance, the iMX8 Quad Max from NXP embeds two ARM Cortex M4 real-time 

microcontrollers, four ARM Cortex-A53 low power cores, and two Cortex-A72 high-

performance cores. This is furthermore complemented by a GPGPU making this architecture a 

viable choice for dealing with both the predictability requirements of dependable systems, and 

the high performance computing requirements of AI algorithms. 

5.2 Sensors  

5.2.1 Sensors for Software & Hardware Monitoring 

Most recent architectures are providing some special hardware allowing us to assess the 

hardware behavior: the hardware Performance Monitoring Counters (PMC). Such counters 

are usually counting the occurrence of architectural events (such as number of caches misses, 

accesses to the bus, and so on…) and therefore provide performance information [43] on the 

applications, the operating system, and the underlying hardware behavior. 

Performance Monitoring Counters were initially designed for performance debugging purpose, 

providing the programmer with better tuning the applications to maximize their performance 

through various optimizations. 
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But such information is also critical in a safety-critical context: It allows to characterize 

workloads, allowing us to quantify hardware resource utilization at application level and 

providing some clues to better understand runtime variability [44]. In a multi-core or many-

core context, hardware monitors are an opportunity to observe contention phenomena at the 

level of the shared hardware resources. 

Performance Monitoring Counters are implemented as special purpose registers available from 

the microarchitecture instruction-set are usually confined to count on-die related events. Some 

architectures however also provide some monitoring facilities at platform / SoC level, allowing 

us to also monitor DRAM memory and peripheral accesses. 

One of the project consortium members, namely TRT, developed METrICS [45], a 

measurement environment for time-critical systems that is developed on top of SYSGO PikeOS 

to provide an accurate measurement of timing and shared hardware resource accesses 

performed by the software. METrICS relies on PMC to observe the behavior of the software 

with regards to shared hardware resource, while minimizing the timing intrusiveness of the 

measurement environment. 

METrICS was used to perform statistical analysis of the traces of collected hardware events to 

helps the expert to characterize the hardware platform with regards to safety or security 

constraints. In the TEACHING project, beyond porting METrICS to a new hardware and a new 

operating system, we plan to direct these traces toward AI Deep Neural Networks (DNN) to 

learn the expected behavior of the software with regards to the hardware to later detect safety 

or security issues as deviation from the expected behavior. 

5.2.2 Sensors for Human Monitoring 

A central feature of TEACHING is the integration of the human-in-the-loop of the autonomous 

application, which requires monitoring their physiological, emotive, and cognitive (PEC) state. 

This has been one of the key motivational aspect in the selection of sensor devices, whose 

integration will be explored as part of the project activities. In particular, we have identified six 

kinds of sensor information which can be useful for the TEACHING human monitoring 

purposes and for feeding the AI components responsible for human PEC state estimation: 

• Inertial data 

• Cardiac and respiratory data  

• Myographic data  

• Electrodermal activity  

• Brain activity 

• Sound. 

Following up the definition of the physical and physiological parameters to be monitored, we 

have identified a list of sensing devices enabling their collection. The selection of the specific 

devices has been driven by the following considerations: 

• Maturity of the technology as assessed in terms of available software and technical 

support, as well as in terms of market readiness. 

• Compatibility with existing communication technologies, operating systems, and 

software. 

• Ease of configuration and personalization. 

• Ease of integration of different devices with same/similar communication and 

synchronization protocols. 
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• Accessibility of raw sensor data with none/minimal pre-processing to allow full 

exploitation of sensed information from the data-driven AI models responsible for PEC 

estimation. 

• Preferably devices that have already been validated for use in biomedical-oriented 

research applications. 

In the following, we provide the list of devices selected based on the criteria described above 

and grouped based on the type of sensed information. 

5.2.2.1 Inertial Data 

Device - Shimmer3 Inertial Measurement Unit (IMU) 

Link - http://www.shimmersensing.com/products/shimmer3-imu-sensor 

Description - Wearable wireless sensor device with integrated 9 degrees of freedom inertial 

sensing, encompassing via accelerometric, gyroscopic, magnetic and pressure sensors, each 

with selectable range. The device also includes an embedded motion processor for 3-

dimensional orientation estimation. All signals can be measured simultaneously and in real-

time. Collected raw-data can be logged on an onboard SD-card or streamed through Bluetooth 

connectivity. 

5.2.2.2 Cardiac data  

Device - Shimmer3 Electrocardiography Sensor (ECG) 

Link - http://www.shimmersensing.com/products/shimmer3-ecg-sensor 

Description – Wearable wireless sensor device for the measurement of ECG signals supporting 

bipolar limb leads and V1-V6 configurations of the electrical probes on the subject.  The device 

also integrates inertial motion sensing capabilities and provides signal validation 

functionalities, including test signal generation, respiration demodulation and lead-off 

detection. The supporting software includes algorithms for heart-rate estimation from ECG 

signals that can be applied in live streaming data or to logged information. Collected raw-data 

can be logged on an onboard SD-card or streamed through Bluetooth connectivity. 

5.2.2.3 Myographic data  

Device - Shimmer3 Electromyogram Sensor (EMG) 

Link - http://www.shimmersensing.com/products/shimmer3-emg-sensor 

Description – Sensor for the measurement of the EMG signals integrated into the same 

wearable device hosting the Shimmer3 ECG unit. It performs a non-invasive EMG that records 

the electrical activity associated with contractions of the whole muscle and assesses nerve 

conduction. The device allows recording of two channels of EMG data that can be measured 

simultaneously with inertial data. The same device hosts the ECG sensor, but its recording is 

alternative to EMG. Collected raw-data can be logged on an onboard SD-card or streamed 

through Bluetooth connectivity. 

5.2.2.4 Electrodermal activity  

Device - Shimmer3 GSR+ (Galvanic Skin Response) 

Link - http://www.shimmersensing.com/products/shimmer3-wireless-gsr-sensor 
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Description – Wearable wireless sensor device providing connections and preamplification for 

one-channel Galvanic Skin Response data acquisition (Electrodermal Resistance Measurement 

- Electrodermal Activity). The sensor allows monitoring the electrical characteristics or 

conductance of skin between two reusable electrodes attached to two fingers of one hand. It 

also integrates a component for capturing photoplethysmogram signals (either by a finger or 

ear-lobe optical probe), which can be used to estimate heart rate (HR), and an inertial sensor. 

All signals can be measured simultaneously and in real-time. Collected raw-data can be logged 

on an onboard SD-card or streamed through Bluetooth connectivity. 

5.2.2.5 Brain activity 

Device - EMOTIV Insight 5 Channel Mobile Brainwear 

Link - www.emotiv.com/product/emotiv-insight-5-channel-mobile-eeg/ 

Description – Dry electrode headset allowing the acquisition of 5-channel 

electroencephalography (EEG) measurements on the AF3, AF4, T7, T8, Pz locations (plus two 

reference sensors on the left mastoid process).  EEG sampling rates are on 128Hz per channel. 

The device is intended for portability (battery powered and wireless) and field research, rather 

than for diagnosis or treatment of medical conditions. It also integrates inertial sensors (3 axis 

accelerometer, gyroscope, and magnetometer) that can acquire data simultaneously with EEG 

sensors (at 64Hz). The device is provided with API and code for mental command recognition, 

stress-arousal estimation, and facial expression recognition, which can be used as a baseline for 

TEACHING PEC estimation algorithms. Collected raw data are streamed through Bluetooth 

connectivity. 

5.2.2.6 Sound 

Device - ReSpeaker Mic Array v2.0 

Link - www.seeedstudio.com/ReSpeaker-Mic-Array-v2-0.html 

Description – Far-field microphone array device capable allowing detection of voices up to a 

distance of 5 meters. The board integrates 4 high performance digital microphones and an 

XMOS XVF-3000 processing unit running on-board DSP algorithms for acoustic echo 

cancellation, beamforming, dereverberation, noise suppression and gain control. The board is 

integrated into a casing with USB interface for connectivity, control and powering; it also 

integrates an analogic stereo output. The device is designed for applications such as voice 

capture, intelligent voice assistant systems, speech-based human-robot interaction, car voice 

assistant.  

5.3 Software tools 

5.3.1 Resource orchestration 

Kubernetes10 is the technology of preference in all sorts of solutions when it comes to providing 

a homogenized execution environment with orchestration capabilities. Along with sibling tools 

such as K3S11, Kubernetes can orchestrate the resources of a multitude of infrastructures, as 

long as they can run containerized software on top of docker or containerd. The latter resolves 

 

10 https://kubernetes.io 
11 https://k3s.io 
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interoperability issues whereas Kubernetes deal with NFRs such as scalability, security, 

availability, reliability (as parts of dependability), etc. 

Furthermore, there are some works in the literature (indicatively: [46], [47]) showing the 

effectiveness of Kubernetes in providing energy efficiency, however they are all tailored to the 

specificities of cloud computing and cluster infrastructures.  

Regarding safety, Kubernetes maintains some internal processes to ensure that safety at the 

compute level is achieved, e.g. every non-faulty container executes requests it receives in the 

same relative order [48]. 

5.3.2 ML/DL Libraries 

ML and DL applications are the basic step towards achieving autonomicity. Thus, the use of 

ML/DL libraries to support such applications is meant to primarily cover the adaptivity NFR. 

The most popular deep learning framework is TensorFlow. 

TensorFlow is a free and open-source software library for machine learning. It can be used 

across a range of tasks but has a particular focus on training and inference of deep neural 

networks [49]. Tensorflow is a symbolic math library based on dataflow and differentiable 

programming. It is used for both research and production at Google [50]. It was developed by 

the Google Brain team for internal Google use and was released under the Apache License 2.0 

in 2015. Its closed-source predecessor is called DistBelief. 

TensorFlow natively resolves multiple problems at the level of infrastructure, homogenizing 

and hiding any complexity of the underlying resources for the developer [50]. The security 

concerns revolving around ML/DL models are many, especially on the topic of adversarial 

attacks [51]. A large body of literature refers to approaches to deal with those while using 

TensorFlow. Examples are techniques for secure inference [52], execution of TensorFlow code 

in a Trusted-Execution Environment [53], etc. 

Regarding safety applications, TensorFlow has been widely proposed for safety-critical 

implementations [54] as well as for techniques for testing, e.g. fault injection [55]. A similar 

approach is taken in terms of energy efficiency, with the platform being used and tested 

extensively for its capacity to implement ML/DL applications in an energy-efficient way [56]–

[58]. 

What makes TensorFlow rather appropriate for the needs of TEACHING, besides the 

familiarity of the researchers and practitioners with it, is also the existence of a lightweight 

version called TensorFlow Lite12. This version provides a better-balanced tradeoff of the 

TEACHING CPSoS NFRs. 

5.3.3 IoT libraries 

Supporting IoT devices either for communication purposes or for deploying parts of the 

applications is crucial for the needs of the TEACHING applications. There are several software 

libraries for that purpose. For instance, the freeRTOS project provides access to some tools for 

IoT device shadowing, performance and security metrics monitoring, etc13. 

However, the dominant specification that needs to be supported in TEACHING is the one 

drafted by OneM2M14. The OneM2M technical specifications address the need for a common 

 

12 https://www.tensorflow.org/lite/ 
13 https://www.freertos.org/iot-libraries.html 
14 https://onem2m.org/technical/published-drafts/ 
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Machine-to-Machine (M2M) Service Layer that can be readily embedded within various 

hardware and software, and relied upon to connect the myriad of devices in the field with M2M 

application servers worldwide. NFRs such as interoperability, security, safety, reliability and 

energy-efficiency are dealt with natively in OneM2M [59]. 

Towards that end, we may focus our attention to the OS-IoT library15. This library provides 

device-side (i.e., Application Entity in oneM2M terminology) support for fundamental 

oneM2M defined functions. The OS-IoT library provides support for the oneM2M network and 

protocol functions allowing application developers to interact with the system over a resource-

oriented API. By using the library application developers reduce the effort needed to support 

IoT devices that hook into the oneM2M ecosystem. Instead of having to deal with networks and 

protocols application developers are freed to focus on the unique, value-added aspects of their 

application. 

5.3.4 Security Libraries 

Secure communications and cryptography support is crucial for the TEACHING CPSoS 

applications. We sought support in native COTS libraries so as to enable the development of 

secure TEACHING CPSoS applications. The mainstream approach is OpenSSL16 support. 

OpenSSL is licensed under an Apache-style license and it is commonly integrated in multiple 

other software libraries. Therefore, it can be assumed that the appropriate libraries (libssl) are 

already included in tools like TensorFlow or OS-IoT.  

At a higher level, TEACHING may provide complete toolkits with security tools for monitoring 

and diagnosing security vulnerabilities. Perhaps the most comprehensive such toolkit is the 

Network Security Toolkit (NST)17. Alternatives can be sought to OWASP-branded auditing 

tools like OWASP ASST18. 

5.3.5 DB Libraries 

For storage purposes, the developers of the TEACHING CPSoS applications may benefit from 

a large array of solutions. Assuming that the tradeoffs between the various NFRs may be similar 

to that of the Android OS, the obvious solution is SQLite19. SQLite implements a small, self-

contained SQL database engine. The SQLite file format is stable, cross-platform, and 

backwards compatible. Among the shortcomings of SQLite the one that is of the highest 

importance to TEACHING is the security aspects. Security is indeed low in the list of NFRs 

that the project developers need to meet. There are numerous proposals to resolve various 

shortcomings (e.g. [60]–[62]) however they all take a significant toll in meeting the rest of the 

NFRs. 

The alternative embedded db system that gains ground nowadays is Oracle Berkeley DB20. 

Berkeley DB is not a relational DB but rathen a document-based, object oriented DB. In other 

words, if the data are grouped in different tables and there is the need to constantly query result 

sets that require relating data from more than one table, then the performance will deteriorate 

significantly. Berkeley DB is better suited for applications using look up tables, i.e., the data is 

organized in a few tables and there is no need to query data from more than one of them in order 

 

15 https://os-iot.org/ 
16 https://www.openssl.org/ 
17 https://www.networksecuritytoolkit.org/nst/index.html 
18 https://github.com/OWASP/ASST 
19 https://www.sqlite.org/index.html 
20 https://www.oracle.com/database/technologies/related/berkeleydb.html 
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to produce the desired result sets. Berkeley DB is generally very fast and supports a lot of 

security features, but it will require more work on the application developers’ end in order to 

get the most out of it. 
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6 TEACHING Platform conceptual architecture 

We iterate that the term “TEACHING Platform” is defined as the combined stack of the 

computing platform and software toolkit upon which a developer develops and deploys CPSoS 

applications. Figure 26 depicts the TEACHING platform, that encompasses all the notions 

mentioned in the TEACHING goal and addresses all the requirements. It also comprises the 

starting point for the design of the individual TEACHING artefacts. 

The conceptual architecture is following the rationale of layered architectures, where each layer 

offers services to the one above. Instantiations of the conceptual architecture may include 

implementations that merge layers, similarly as ISO/OSI and TCP/IP. 

The starting point for designing the architecture of the TEACHING Platform is the TEACHING 

goal which states “a computing platform and the associated software toolkit supporting the 

development and deployment of autonomous, adaptive and dependable CPSoS applications”. 

As such, at the top layer we place the CPSoS applications that are meant to be supported by the 

computing platform and the software toolkit, i.e. the TEACHING Platform. 

Based on our definition of CPSoS applications provided in Section 3.3, i.e. the applications that 

meet a certain number of NFRs, we provide a layer whose components are meeting those NFRs. 

This layer is meant to provide the specification of the software toolkit. 

The underlying layers are forming the TEACHING computing platform. They start with the 

layer that is meant to provide all the supporting software tools that will allow the development 

of the CPSoS applications and meet the functional requirements as presented in Section 3.2. 

The layer below is meant to specify the way that the computing platform will deal with 

interoperability issues, homogenizing the underlying computing and network infrastructures. 

The final layer is dealing with the specification of the infrastructure as proposed in Section 5. 

In what follows, we provide a more detailed view of the TEACHING Platform.  
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Figure 26: TEACHING platform 

The TEACHING platform is comprised of 5 layers, each of which provides services to the 

one above. At the bottom of the stack, we have the infrastructure layer.  

Infrastructure Layer: The infrastructure layer is comprised of various heterogeneous 

infrastructures, exposed through an embedded system OS and the cloud/edge resources. 

TEACHING assumes that access to the resources of those infrastructures is a priori possible. 

On that premise, the first task of TEACHING is to homogenize those resources, something that 

is the main functionality of the Infrastructure Abstraction Layer. 
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Infrastructure Abstraction Layer (IAL): The IAL provides a single, abstraction layer for 

execution of applications (code or components). Essentially it homogenizes the underlying 

infrastructures providing a single API to deploy, execute and monitor resources and application 

components. This layer also caters for implementing I/Os, with the underlying persistence 

layers as well as with the supported peripherals, i.e., the target autonomous system (CPS), 

external APIs (e.g., web services), but most importantly with the mechanisms that provide the 

human feedback. 

Execution/Management Environment (EME): The EME exposes a single API that facilitated 

the execution and lifecycle management of the application components. It provides the runtime 

for that purpose, along with integrated libraries, implemented at a low-abstraction language, 

providing services and optimizations at the top layers. Such libraries include ML runtimes such 

as those of Tensorflow and PyTorch, or ML optimizations in Python, C++, Java, etc. It also 

includes libraries for managing IoT solutions (e.g., OS-IoT) implementing IoT protocols such 

as OneM2M. Other libraries include the DB and security libraries ensuring that this kind of 

functionality is provided to the layers above. 

TEACHING Software Toolkit (SDK): The TEACHING SDK provides the framework to 

implement CPSoS applications. It provides APIs to implement applications that can run on the 

TEACHING platform making the best use of the CPSoS services. The TEACHING SDK 

supports 6 toolkits: 

• The AI toolkit is the software library that allows the developer to invoke learning 

modules, set up training or inference procedures, etc. The AI toolkit has the appropriate 

wirings with the underlying layers to deploy and run the ML components at the 

appropriate resources (e.g., GPUs) and facilitates the I/Os and dataset management.  

• The HCI toolkit allows the software developer to invoke the services that are relevant 

to the human feedback, e.g., filters, buffers and other suchlike tools for retrieving and 

managing the human feedback. Furthermore, this toolkit includes design patterns and 

guidelines for human centered design. 

• The Security and Privacy toolkit provides readily available security APIs as well as 

privacy guidelines. In terms of security, the developers may define a part of their code 

or a standalone component that has to run on a secure enclave, or that the 

communication between components has to use OpenSSL calls. In terms of privacy, the 

developers may identify datasets as containing sensitive data, thus implicitly imposing 

constraints in their further use. Furthermore, the privacy toolkit may also include 

functional tools like anonymizers. 

• The Dependability toolkit provides software that audits the code or application 

components against the TEACHING dependability guidelines/procedures. It also 

provides engineering patterns implementations that the developers can invoke, for 

ensuring the dependable execution of software. For instance, in cases where the 

developers invoke online training approaches through the AI toolkit, the dependability 

toolkit may allow the code to run in multiple instances implementing a consensus 

model. 

• The Energy Efficiency toolkit is linking the code or components that the user would 

like to run with energy efficiency services provided by the underlying layers. E.g., in 

order to run an application, the toolkit may employ energy efficient approaches such as 

dynamic voltage and frequency scaling (DVFS), power mode management (PMM) or 

using unconventional cores such as DSP or GPUs of FPGAs. This can be done 

automatically or invoked by the user (e.g., “annotating” a part of the code or a 

component). 
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TEACHING CPSoS Applications: The TEACHING applications may be comprised of 

loosely coupled, standalone, independent components (e.g., docker images) that the 

TEACHING SDK builds or software that the TEACHING SDK compiles and executes. 
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7 Conclusions 

WP1 is meant to provide technical strategy and oversight for all research and development 

activities throughout the lifecycle of the project. It also includes requirements collection and 

analysis, state of the art review, and architecture specification production. The activities within 

this work package strongly interact with those in the technical WPs providing specifications for 

the tools and software developed therein and taking care of their smooth integration. The 

specific objectives of this WP for year 1 were to: 

• Review the state-of-the-art, track future technology trends, and identify appropriate 

hardware platforms, sensors and software tools. 

• Identify and track end user and technical requirements, querying use case partners and 

technical contributors of TEACHING. 

This report provides an overview of work conducted mainly in Tasks 1.1 and 1.3 during this 

first year of the project towards the implementation of those objectives. The main outcomes 

presented here are the: 

• Delineation of the scope of the TEACHING CPSoS: The work defined the 

TEACHING CPSoS, setting a theoretical frame to the R&D work to be conducted by 

the technical WPs of the project. 

• Definition of baseline tools and technologies: Each of the presented tools meets the 

challenges for the NFRs and can be used for the implementation of the TEACHING 

Platform. It is a shortlist to be used by the technical WPs while taking into 

considerations the tradeoffs in meeting the non-functional requirements. The 

preliminary indications for such tools are: 

o Hardware Platform: I&M SDF for the automotive and iMX8 for the avionics use 

case 

o Sensors for software monitoring: METrICS 

o Sensors for human monitoring: Shimmer array, plus emotive and respeaker 

sensors 

o Resource orchestration and execution environment: Kubernetes/K3S 

o ML/DL libraries/toolkits: TensorFlow/Lite 

o IoT libraries/toolkits: OS-IoT 

o Security libraries/toolkits: OpenSSL (low level), NST 

o DB libraries/toolkits: SQLite 

• Conceptual architecture of the TEACHING Platform: This work is expected to 

facilitate the communication of the framework set in WP1 with the rest of the WPs and 

act as a precursor to the detailed architecture that is to be released at the end of the 

second year of the project with D1.2 

Those outcomes form a framework for the various versions of requirements elicited at various 

levels of detail within the technical WPs and as a bullet-tracer for the research and development 

work to be conducted. As such, we infer that the objectives of WP1 are considered to be 

achieved.  
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